v8  4.5.103(node4.8.4)
V8 is Google's open source JavaScript engine
v8.h
Go to the documentation of this file.
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 /** \mainpage V8 API Reference Guide
6  *
7  * V8 is Google's open source JavaScript engine.
8  *
9  * This set of documents provides reference material generated from the
10  * V8 header file, include/v8.h.
11  *
12  * For other documentation see http://code.google.com/apis/v8/
13  */
14 
15 #ifndef V8_H_
16 #define V8_H_
17 
18 #include <stddef.h>
19 #include <stdint.h>
20 #include <stdio.h>
21 
22 #include "v8-version.h"
23 #include "v8config.h"
24 
25 // We reserve the V8_* prefix for macros defined in V8 public API and
26 // assume there are no name conflicts with the embedder's code.
27 
28 #ifdef V8_OS_WIN
29 
30 // Setup for Windows DLL export/import. When building the V8 DLL the
31 // BUILDING_V8_SHARED needs to be defined. When building a program which uses
32 // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
33 // static library or building a program which uses the V8 static library neither
34 // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
35 #if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
36 #error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the
37  build configuration to ensure that at most one of these is set
38 #endif
39 
40 #ifdef BUILDING_V8_SHARED
41 # define V8_EXPORT __declspec(dllexport)
42 #elif USING_V8_SHARED
43 # define V8_EXPORT __declspec(dllimport)
44 #else
45 # define V8_EXPORT
46 #endif // BUILDING_V8_SHARED
47 
48 #else // V8_OS_WIN
49 
50 // Setup for Linux shared library export.
51 #if V8_HAS_ATTRIBUTE_VISIBILITY && defined(V8_SHARED)
52 # ifdef BUILDING_V8_SHARED
53 # define V8_EXPORT __attribute__ ((visibility("default")))
54 # else
55 # define V8_EXPORT
56 # endif
57 #else
58 # define V8_EXPORT
59 #endif
60 
61 #endif // V8_OS_WIN
62 
63 /**
64  * The v8 JavaScript engine.
65  */
66 namespace v8 {
67 
68 class AccessorSignature;
69 class Array;
70 class Boolean;
71 class BooleanObject;
72 class Context;
73 class CpuProfiler;
74 class Data;
75 class Date;
76 class External;
77 class Function;
78 class FunctionTemplate;
79 class HeapProfiler;
80 class ImplementationUtilities;
81 class Int32;
82 class Integer;
83 class Isolate;
84 template <class T>
85 class Maybe;
86 class Name;
87 class Number;
88 class NumberObject;
89 class Object;
90 class ObjectOperationDescriptor;
91 class ObjectTemplate;
92 class Platform;
93 class Primitive;
94 class Promise;
95 class RawOperationDescriptor;
96 class Script;
97 class SharedArrayBuffer;
98 class Signature;
99 class StartupData;
100 class StackFrame;
101 class StackTrace;
102 class String;
103 class StringObject;
104 class Symbol;
105 class SymbolObject;
106 class Uint32;
107 class Utils;
108 class Value;
109 template <class T> class Local;
110 template <class T>
111 class MaybeLocal;
112 template <class T> class Eternal;
113 template<class T> class NonCopyablePersistentTraits;
114 template<class T> class PersistentBase;
115 template<class T,
116  class M = NonCopyablePersistentTraits<T> > class Persistent;
117 template <class T>
118 class Global;
119 template<class K, class V, class T> class PersistentValueMap;
120 template <class K, class V, class T>
122 template <class K, class V, class T>
123 class GlobalValueMap;
124 template<class V, class T> class PersistentValueVector;
125 template<class T, class P> class WeakCallbackObject;
126 class FunctionTemplate;
127 class ObjectTemplate;
128 class Data;
129 template<typename T> class FunctionCallbackInfo;
130 template<typename T> class PropertyCallbackInfo;
131 class StackTrace;
132 class StackFrame;
133 class Isolate;
134 class CallHandlerHelper;
136 template<typename T> class ReturnValue;
137 
138 namespace internal {
139 class Arguments;
140 class Heap;
141 class HeapObject;
142 class Isolate;
143 class Object;
144 struct StreamedSource;
145 template<typename T> class CustomArguments;
146 class PropertyCallbackArguments;
147 class FunctionCallbackArguments;
148 class GlobalHandles;
149 }
150 
151 
152 /**
153  * General purpose unique identifier.
154  */
155 class UniqueId {
156  public:
157  explicit UniqueId(intptr_t data)
158  : data_(data) {}
159 
160  bool operator==(const UniqueId& other) const {
161  return data_ == other.data_;
162  }
163 
164  bool operator!=(const UniqueId& other) const {
165  return data_ != other.data_;
166  }
167 
168  bool operator<(const UniqueId& other) const {
169  return data_ < other.data_;
170  }
171 
172  private:
173  intptr_t data_;
174 };
175 
176 // --- Handles ---
177 
178 #define TYPE_CHECK(T, S)
179  while (false) {
180  *(static_cast<T* volatile*>(0)) = static_cast<S*>(0);
181  }
182 
183 
184 /**
185  * An object reference managed by the v8 garbage collector.
186  *
187  * All objects returned from v8 have to be tracked by the garbage
188  * collector so that it knows that the objects are still alive. Also,
189  * because the garbage collector may move objects, it is unsafe to
190  * point directly to an object. Instead, all objects are stored in
191  * handles which are known by the garbage collector and updated
192  * whenever an object moves. Handles should always be passed by value
193  * (except in cases like out-parameters) and they should never be
194  * allocated on the heap.
195  *
196  * There are two types of handles: local and persistent handles.
197  * Local handles are light-weight and transient and typically used in
198  * local operations. They are managed by HandleScopes. Persistent
199  * handles can be used when storing objects across several independent
200  * operations and have to be explicitly deallocated when they're no
201  * longer used.
202  *
203  * It is safe to extract the object stored in the handle by
204  * dereferencing the handle (for instance, to extract the Object* from
205  * a Local<Object>); the value will still be governed by a handle
206  * behind the scenes and the same rules apply to these values as to
207  * their handles.
208  */
209 template <class T>
210 class Local {
211  public:
212  V8_INLINE Local() : val_(0) {}
213  template <class S>
214  V8_INLINE Local(Local<S> that)
215  : val_(reinterpret_cast<T*>(*that)) {
216  /**
217  * This check fails when trying to convert between incompatible
218  * handles. For example, converting from a Local<String> to a
219  * Local<Number>.
220  */
221  TYPE_CHECK(T, S);
222  }
223 
224  /**
225  * Returns true if the handle is empty.
226  */
227  V8_INLINE bool IsEmpty() const { return val_ == 0; }
228 
229  /**
230  * Sets the handle to be empty. IsEmpty() will then return true.
231  */
232  V8_INLINE void Clear() { val_ = 0; }
233 
234  V8_INLINE T* operator->() const { return val_; }
235 
236  V8_INLINE T* operator*() const { return val_; }
237 
238  /**
239  * Checks whether two handles are the same.
240  * Returns true if both are empty, or if the objects
241  * to which they refer are identical.
242  * The handles' references are not checked.
243  */
244  template <class S>
245  V8_INLINE bool operator==(const Local<S>& that) const {
246  internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
247  internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
248  if (a == 0) return b == 0;
249  if (b == 0) return false;
250  return *a == *b;
251  }
252 
253  template <class S> V8_INLINE bool operator==(
254  const PersistentBase<S>& that) const {
255  internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
256  internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
257  if (a == 0) return b == 0;
258  if (b == 0) return false;
259  return *a == *b;
260  }
261 
262  /**
263  * Checks whether two handles are different.
264  * Returns true if only one of the handles is empty, or if
265  * the objects to which they refer are different.
266  * The handles' references are not checked.
267  */
268  template <class S>
269  V8_INLINE bool operator!=(const Local<S>& that) const {
270  return !operator==(that);
271  }
272 
273  template <class S> V8_INLINE bool operator!=(
274  const Persistent<S>& that) const {
275  return !operator==(that);
276  }
277 
278  template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
279 #ifdef V8_ENABLE_CHECKS
280  // If we're going to perform the type check then we have to check
281  // that the handle isn't empty before doing the checked cast.
282  if (that.IsEmpty()) return Local<T>();
283 #endif
284  return Local<T>(T::Cast(*that));
285  }
286 
287 
288  template <class S> V8_INLINE Local<S> As() {
289  return Local<S>::Cast(*this);
290  }
291 
292  /**
293  * Create a local handle for the content of another handle.
294  * The referee is kept alive by the local handle even when
295  * the original handle is destroyed/disposed.
296  */
297  V8_INLINE static Local<T> New(Isolate* isolate, Local<T> that);
298  V8_INLINE static Local<T> New(Isolate* isolate,
299  const PersistentBase<T>& that);
300 
301  private:
302  friend class Utils;
303  template<class F> friend class Eternal;
304  template<class F> friend class PersistentBase;
305  template<class F, class M> friend class Persistent;
306  template<class F> friend class Local;
307  template <class F>
308  friend class MaybeLocal;
309  template<class F> friend class FunctionCallbackInfo;
310  template<class F> friend class PropertyCallbackInfo;
311  friend class String;
312  friend class Object;
313  friend class Context;
314  template<class F> friend class internal::CustomArguments;
316  friend Local<Primitive> Null(Isolate* isolate);
317  friend Local<Boolean> True(Isolate* isolate);
318  friend Local<Boolean> False(Isolate* isolate);
319  friend class HandleScope;
320  friend class EscapableHandleScope;
321  template <class F1, class F2, class F3>
323  template<class F1, class F2> friend class PersistentValueVector;
324 
325  template <class S>
326  V8_INLINE Local(S* that)
327  : val_(that) {}
328  V8_INLINE static Local<T> New(Isolate* isolate, T* that);
329  T* val_;
330 };
331 
332 
333 #if !defined(V8_IMMINENT_DEPRECATION_WARNINGS)
334 // Local is an alias for Local for historical reasons.
335 template <class T>
336 using Handle = Local<T>;
337 #endif
338 
339 
340 /**
341  * A MaybeLocal<> is a wrapper around Local<> that enforces a check whether
342  * the Local<> is empty before it can be used.
343  *
344  * If an API method returns a MaybeLocal<>, the API method can potentially fail
345  * either because an exception is thrown, or because an exception is pending,
346  * e.g. because a previous API call threw an exception that hasn't been caught
347  * yet, or because a TerminateExecution exception was thrown. In that case, an
348  * empty MaybeLocal is returned.
349  */
350 template <class T>
351 class MaybeLocal {
352  public:
354  template <class S>
355  V8_INLINE MaybeLocal(Local<S> that)
356  : val_(reinterpret_cast<T*>(*that)) {
357  TYPE_CHECK(T, S);
358  }
359 
360  V8_INLINE bool IsEmpty() const { return val_ == nullptr; }
361 
362  template <class S>
363  V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const {
364  out->val_ = IsEmpty() ? nullptr : this->val_;
365  return !IsEmpty();
366  }
367 
368  // Will crash if the MaybeLocal<> is empty.
369  V8_INLINE Local<T> ToLocalChecked();
370 
371  template <class S>
372  V8_INLINE Local<S> FromMaybe(Local<S> default_value) const {
373  return IsEmpty() ? default_value : Local<S>(val_);
374  }
375 
376  private:
377  T* val_;
378 };
379 
380 
381 // Eternal handles are set-once handles that live for the life of the isolate.
382 template <class T> class Eternal {
383  public:
384  V8_INLINE Eternal() : index_(kInitialValue) { }
385  template<class S>
386  V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) {
387  Set(isolate, handle);
388  }
389  // Can only be safely called if already set.
390  V8_INLINE Local<T> Get(Isolate* isolate);
391  V8_INLINE bool IsEmpty() { return index_ == kInitialValue; }
392  template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
393 
394  private:
395  static const int kInitialValue = -1;
396  int index_;
397 };
398 
399 
400 static const int kInternalFieldsInWeakCallback = 2;
401 
402 
403 template <typename T>
405  public:
406  typedef void (*Callback)(const WeakCallbackInfo<T>& data);
407 
408  WeakCallbackInfo(Isolate* isolate, T* parameter,
409  void* internal_fields[kInternalFieldsInWeakCallback],
410  Callback* callback)
411  : isolate_(isolate), parameter_(parameter), callback_(callback) {
412  for (int i = 0; i < kInternalFieldsInWeakCallback; ++i) {
413  internal_fields_[i] = internal_fields[i];
414  }
415  }
416 
417  V8_INLINE Isolate* GetIsolate() const { return isolate_; }
418  V8_INLINE T* GetParameter() const { return parameter_; }
419  V8_INLINE void* GetInternalField(int index) const;
420 
421  V8_INLINE V8_DEPRECATE_SOON("use indexed version",
422  void* GetInternalField1() const) {
423  return internal_fields_[0];
424  }
425  V8_INLINE V8_DEPRECATE_SOON("use indexed version",
426  void* GetInternalField2() const) {
427  return internal_fields_[1];
428  }
429 
430  bool IsFirstPass() const { return callback_ != nullptr; }
431 
432  // When first called, the embedder MUST Reset() the Global which triggered the
433  // callback. The Global itself is unusable for anything else. No v8 other api
434  // calls may be called in the first callback. Should additional work be
435  // required, the embedder must set a second pass callback, which will be
436  // called after all the initial callbacks are processed.
437  // Calling SetSecondPassCallback on the second pass will immediately crash.
438  void SetSecondPassCallback(Callback callback) const { *callback_ = callback; }
439 
440  private:
441  Isolate* isolate_;
442  T* parameter_;
443  Callback* callback_;
444  void* internal_fields_[kInternalFieldsInWeakCallback];
445 };
446 
447 
448 template <class T, class P>
450  public:
451  typedef void (*Callback)(const WeakCallbackData<T, P>& data);
452 
453  WeakCallbackData(Isolate* isolate, P* parameter, Local<T> handle)
454  : isolate_(isolate), parameter_(parameter), handle_(handle) {}
455 
456  V8_INLINE Isolate* GetIsolate() const { return isolate_; }
457  V8_INLINE P* GetParameter() const { return parameter_; }
458  V8_INLINE Local<T> GetValue() const { return handle_; }
459 
460  private:
461  Isolate* isolate_;
462  P* parameter_;
463  Local<T> handle_;
464 };
465 
466 
467 // TODO(dcarney): delete this with WeakCallbackData
468 template <class T>
469 using PhantomCallbackData = WeakCallbackInfo<T>;
470 
471 
473 
474 
475 /**
476  * An object reference that is independent of any handle scope. Where
477  * a Local handle only lives as long as the HandleScope in which it was
478  * allocated, a PersistentBase handle remains valid until it is explicitly
479  * disposed.
480  *
481  * A persistent handle contains a reference to a storage cell within
482  * the v8 engine which holds an object value and which is updated by
483  * the garbage collector whenever the object is moved. A new storage
484  * cell can be created using the constructor or PersistentBase::Reset and
485  * existing handles can be disposed using PersistentBase::Reset.
486  *
487  */
488 template <class T> class PersistentBase {
489  public:
490  /**
491  * If non-empty, destroy the underlying storage cell
492  * IsEmpty() will return true after this call.
493  */
494  V8_INLINE void Reset();
495  /**
496  * If non-empty, destroy the underlying storage cell
497  * and create a new one with the contents of other if other is non empty
498  */
499  template <class S>
500  V8_INLINE void Reset(Isolate* isolate, const Local<S>& other);
501 
502  /**
503  * If non-empty, destroy the underlying storage cell
504  * and create a new one with the contents of other if other is non empty
505  */
506  template <class S>
507  V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
508 
509  V8_INLINE bool IsEmpty() const { return val_ == NULL; }
510  V8_INLINE void Empty() { val_ = 0; }
511 
512  template <class S>
513  V8_INLINE bool operator==(const PersistentBase<S>& that) const {
514  internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
515  internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
516  if (a == NULL) return b == NULL;
517  if (b == NULL) return false;
518  return *a == *b;
519  }
520 
521  template <class S>
522  V8_INLINE bool operator==(const Local<S>& that) const {
523  internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
524  internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
525  if (a == NULL) return b == NULL;
526  if (b == NULL) return false;
527  return *a == *b;
528  }
529 
530  template <class S>
531  V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
532  return !operator==(that);
533  }
534 
535  template <class S>
536  V8_INLINE bool operator!=(const Local<S>& that) const {
537  return !operator==(that);
538  }
539 
540  /**
541  * Install a finalization callback on this object.
542  * NOTE: There is no guarantee as to *when* or even *if* the callback is
543  * invoked. The invocation is performed solely on a best effort basis.
544  * As always, GC-based finalization should *not* be relied upon for any
545  * critical form of resource management!
546  */
547  template <typename P>
549  "use WeakCallbackInfo version",
550  void SetWeak(P* parameter,
551  typename WeakCallbackData<T, P>::Callback callback));
552 
553  template <typename S, typename P>
555  "use WeakCallbackInfo version",
556  void SetWeak(P* parameter,
557  typename WeakCallbackData<S, P>::Callback callback));
558 
559  // Phantom persistents work like weak persistents, except that the pointer to
560  // the object being collected is not available in the finalization callback.
561  // This enables the garbage collector to collect the object and any objects
562  // it references transitively in one GC cycle. At the moment you can either
563  // specify a parameter for the callback or the location of two internal
564  // fields in the dying object.
565  template <typename P>
567  "use SetWeak",
568  void SetPhantom(P* parameter,
569  typename WeakCallbackInfo<P>::Callback callback,
570  int internal_field_index1 = -1,
571  int internal_field_index2 = -1));
572 
573  template <typename P>
574  V8_INLINE void SetWeak(P* parameter,
575  typename WeakCallbackInfo<P>::Callback callback,
576  WeakCallbackType type);
577 
578  template<typename P>
579  V8_INLINE P* ClearWeak();
580 
581  // TODO(dcarney): remove this.
582  V8_INLINE void ClearWeak() { ClearWeak<void>(); }
583 
584  /**
585  * Marks the reference to this object independent. Garbage collector is free
586  * to ignore any object groups containing this object. Weak callback for an
587  * independent handle should not assume that it will be preceded by a global
588  * GC prologue callback or followed by a global GC epilogue callback.
589  */
590  V8_INLINE void MarkIndependent();
591 
592  /**
593  * Marks the reference to this object partially dependent. Partially dependent
594  * handles only depend on other partially dependent handles and these
595  * dependencies are provided through object groups. It provides a way to build
596  * smaller object groups for young objects that represent only a subset of all
597  * external dependencies. This mark is automatically cleared after each
598  * garbage collection.
599  */
601 
602  V8_INLINE bool IsIndependent() const;
603 
604  /** Checks if the handle holds the only reference to an object. */
605  V8_INLINE bool IsNearDeath() const;
606 
607  /** Returns true if the handle's reference is weak. */
608  V8_INLINE bool IsWeak() const;
609 
610  /**
611  * Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
612  * description in v8-profiler.h for details.
613  */
614  V8_INLINE void SetWrapperClassId(uint16_t class_id);
615 
616  /**
617  * Returns the class ID previously assigned to this handle or 0 if no class ID
618  * was previously assigned.
619  */
620  V8_INLINE uint16_t WrapperClassId() const;
621 
622  private:
623  friend class Isolate;
624  friend class Utils;
625  template<class F> friend class Local;
626  template<class F1, class F2> friend class Persistent;
627  template <class F>
628  friend class Global;
629  template<class F> friend class PersistentBase;
630  template<class F> friend class ReturnValue;
631  template <class F1, class F2, class F3>
633  template<class F1, class F2> friend class PersistentValueVector;
634  friend class Object;
635 
636  explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
637  PersistentBase(PersistentBase& other) = delete; // NOLINT
638  void operator=(PersistentBase&) = delete;
639  V8_INLINE static T* New(Isolate* isolate, T* that);
640 
641  T* val_;
642 };
643 
644 
645 /**
646  * Default traits for Persistent. This class does not allow
647  * use of the copy constructor or assignment operator.
648  * At present kResetInDestructor is not set, but that will change in a future
649  * version.
650  */
651 template<class T>
652 class NonCopyablePersistentTraits {
653  public:
654  typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
655  static const bool kResetInDestructor = false;
656  template<class S, class M>
657  V8_INLINE static void Copy(const Persistent<S, M>& source,
658  NonCopyablePersistent* dest) {
659  Uncompilable<Object>();
660  }
661  // TODO(dcarney): come up with a good compile error here.
662  template<class O> V8_INLINE static void Uncompilable() {
663  TYPE_CHECK(O, Primitive);
664  }
665 };
666 
667 
668 /**
669  * Helper class traits to allow copying and assignment of Persistent.
670  * This will clone the contents of storage cell, but not any of the flags, etc.
671  */
672 template<class T>
674  typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
675  static const bool kResetInDestructor = true;
676  template<class S, class M>
677  static V8_INLINE void Copy(const Persistent<S, M>& source,
678  CopyablePersistent* dest) {
679  // do nothing, just allow copy
680  }
681 };
682 
683 
684 /**
685  * A PersistentBase which allows copy and assignment.
686  *
687  * Copy, assignment and destructor bevavior is controlled by the traits
688  * class M.
689  *
690  * Note: Persistent class hierarchy is subject to future changes.
691  */
692 template <class T, class M> class Persistent : public PersistentBase<T> {
693  public:
694  /**
695  * A Persistent with no storage cell.
696  */
697  V8_INLINE Persistent() : PersistentBase<T>(0) { }
698  /**
699  * Construct a Persistent from a Local.
700  * When the Local is non-empty, a new storage cell is created
701  * pointing to the same object, and no flags are set.
702  */
703  template <class S>
704  V8_INLINE Persistent(Isolate* isolate, Local<S> that)
705  : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
706  TYPE_CHECK(T, S);
707  }
708  /**
709  * Construct a Persistent from a Persistent.
710  * When the Persistent is non-empty, a new storage cell is created
711  * pointing to the same object, and no flags are set.
712  */
713  template <class S, class M2>
714  V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
715  : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
716  TYPE_CHECK(T, S);
717  }
718  /**
719  * The copy constructors and assignment operator create a Persistent
720  * exactly as the Persistent constructor, but the Copy function from the
721  * traits class is called, allowing the setting of flags based on the
722  * copied Persistent.
723  */
724  V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
725  Copy(that);
726  }
727  template <class S, class M2>
728  V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
729  Copy(that);
730  }
731  V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
732  Copy(that);
733  return *this;
734  }
735  template <class S, class M2>
736  V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
737  Copy(that);
738  return *this;
739  }
740  /**
741  * The destructor will dispose the Persistent based on the
742  * kResetInDestructor flags in the traits class. Since not calling dispose
743  * can result in a memory leak, it is recommended to always set this flag.
744  */
746  if (M::kResetInDestructor) this->Reset();
747  }
748 
749  // TODO(dcarney): this is pretty useless, fix or remove
750  template <class S>
751  V8_INLINE static Persistent<T>& Cast(Persistent<S>& that) { // NOLINT
752 #ifdef V8_ENABLE_CHECKS
753  // If we're going to perform the type check then we have to check
754  // that the handle isn't empty before doing the checked cast.
755  if (!that.IsEmpty()) T::Cast(*that);
756 #endif
757  return reinterpret_cast<Persistent<T>&>(that);
758  }
759 
760  // TODO(dcarney): this is pretty useless, fix or remove
761  template <class S> V8_INLINE Persistent<S>& As() { // NOLINT
762  return Persistent<S>::Cast(*this);
763  }
764 
765  private:
766  friend class Isolate;
767  friend class Utils;
768  template<class F> friend class Local;
769  template<class F1, class F2> friend class Persistent;
770  template<class F> friend class ReturnValue;
771 
772  template <class S> V8_INLINE Persistent(S* that) : PersistentBase<T>(that) { }
773  V8_INLINE T* operator*() const { return this->val_; }
774  template<class S, class M2>
775  V8_INLINE void Copy(const Persistent<S, M2>& that);
776 };
777 
778 
779 /**
780  * A PersistentBase which has move semantics.
781  *
782  * Note: Persistent class hierarchy is subject to future changes.
783  */
784 template <class T>
785 class Global : public PersistentBase<T> {
786  public:
787  /**
788  * A Global with no storage cell.
789  */
791  /**
792  * Construct a Global from a Local.
793  * When the Local is non-empty, a new storage cell is created
794  * pointing to the same object, and no flags are set.
795  */
796  template <class S>
797  V8_INLINE Global(Isolate* isolate, Local<S> that)
798  : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
799  TYPE_CHECK(T, S);
800  }
801  /**
802  * Construct a Global from a PersistentBase.
803  * When the Persistent is non-empty, a new storage cell is created
804  * pointing to the same object, and no flags are set.
805  */
806  template <class S>
807  V8_INLINE Global(Isolate* isolate, const PersistentBase<S>& that)
808  : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
809  TYPE_CHECK(T, S);
810  }
811  /**
812  * Move constructor.
813  */
814  V8_INLINE Global(Global&& other) : PersistentBase<T>(other.val_) {
815  other.val_ = nullptr;
816  }
817  V8_INLINE ~Global() { this->Reset(); }
818  /**
819  * Move via assignment.
820  */
821  template <class S>
822  V8_INLINE Global& operator=(Global<S>&& rhs) {
823  TYPE_CHECK(T, S);
824  if (this != &rhs) {
825  this->Reset();
826  this->val_ = rhs.val_;
827  rhs.val_ = nullptr;
828  }
829  return *this;
830  }
831  /**
832  * Pass allows returning uniques from functions, etc.
833  */
834  Global Pass() { return static_cast<Global&&>(*this); }
835 
836  /*
837  * For compatibility with Chromium's base::Bind (base::Passed).
838  */
839  typedef void MoveOnlyTypeForCPP03;
840 
841  private:
842  template <class F>
843  friend class ReturnValue;
844  Global(Global&) = delete;
845  void operator=(Global&) = delete;
846  V8_INLINE T* operator*() const { return this->val_; }
847 };
848 
849 
850 // UniquePersistent is an alias for Global for historical reason.
851 template <class T>
852 using UniquePersistent = Global<T>;
853 
854 
855  /**
856  * A stack-allocated class that governs a number of local handles.
857  * After a handle scope has been created, all local handles will be
858  * allocated within that handle scope until either the handle scope is
859  * deleted or another handle scope is created. If there is already a
860  * handle scope and a new one is created, all allocations will take
861  * place in the new handle scope until it is deleted. After that,
862  * new handles will again be allocated in the original handle scope.
863  *
864  * After the handle scope of a local handle has been deleted the
865  * garbage collector will no longer track the object stored in the
866  * handle and may deallocate it. The behavior of accessing a handle
867  * for which the handle scope has been deleted is undefined.
868  */
870  public:
871  HandleScope(Isolate* isolate);
872 
873  ~HandleScope();
874 
875  /**
876  * Counts the number of allocated handles.
877  */
878  static int NumberOfHandles(Isolate* isolate);
879 
881  return reinterpret_cast<Isolate*>(isolate_);
882  }
883 
884  protected:
886 
887  void Initialize(Isolate* isolate);
888 
889  static internal::Object** CreateHandle(internal::Isolate* isolate,
890  internal::Object* value);
891 
892  private:
893  // Uses heap_object to obtain the current Isolate.
894  static internal::Object** CreateHandle(internal::HeapObject* heap_object,
895  internal::Object* value);
896 
897  // Make it hard to create heap-allocated or illegal handle scopes by
898  // disallowing certain operations.
899  HandleScope(const HandleScope&);
900  void operator=(const HandleScope&);
901  void* operator new(size_t size);
902  void operator delete(void*, size_t);
903 
904  internal::Isolate* isolate_;
905  internal::Object** prev_next_;
906  internal::Object** prev_limit_;
907 
908  // Local::New uses CreateHandle with an Isolate* parameter.
909  template<class F> friend class Local;
910 
911  // Object::GetInternalField and Context::GetEmbedderData use CreateHandle with
912  // a HeapObject* in their shortcuts.
913  friend class Object;
914  friend class Context;
915 };
916 
917 
918 /**
919  * A HandleScope which first allocates a handle in the current scope
920  * which will be later filled with the escape value.
921  */
923  public:
924  EscapableHandleScope(Isolate* isolate);
926 
927  /**
928  * Pushes the value into the previous scope and returns a handle to it.
929  * Cannot be called twice.
930  */
931  template <class T>
932  V8_INLINE Local<T> Escape(Local<T> value) {
933  internal::Object** slot =
934  Escape(reinterpret_cast<internal::Object**>(*value));
935  return Local<T>(reinterpret_cast<T*>(slot));
936  }
937 
938  private:
939  internal::Object** Escape(internal::Object** escape_value);
940 
941  // Make it hard to create heap-allocated or illegal handle scopes by
942  // disallowing certain operations.
943  EscapableHandleScope(const EscapableHandleScope&);
944  void operator=(const EscapableHandleScope&);
945  void* operator new(size_t size);
946  void operator delete(void*, size_t);
947 
948  internal::Object** escape_slot_;
949 };
950 
952  public:
953  SealHandleScope(Isolate* isolate);
954  ~SealHandleScope();
955 
956  private:
957  // Make it hard to create heap-allocated or illegal handle scopes by
958  // disallowing certain operations.
959  SealHandleScope(const SealHandleScope&);
960  void operator=(const SealHandleScope&);
961  void* operator new(size_t size);
962  void operator delete(void*, size_t);
963 
964  internal::Isolate* isolate_;
965  int prev_level_;
966  internal::Object** prev_limit_;
967 };
968 
969 
970 // --- Special objects ---
971 
972 
973 /**
974  * The superclass of values and API object templates.
975  */
977  private:
978  Data();
979 };
980 
981 
982 /**
983  * The optional attributes of ScriptOrigin.
984  */
986  public:
987  V8_INLINE ScriptOriginOptions(bool is_embedder_debug_script = false,
988  bool is_shared_cross_origin = false,
989  bool is_opaque = false)
990  : flags_((is_embedder_debug_script ? kIsEmbedderDebugScript : 0) |
991  (is_shared_cross_origin ? kIsSharedCrossOrigin : 0) |
992  (is_opaque ? kIsOpaque : 0)) {}
994  : flags_(flags &
995  (kIsEmbedderDebugScript | kIsSharedCrossOrigin | kIsOpaque)) {}
996  bool IsEmbedderDebugScript() const {
997  return (flags_ & kIsEmbedderDebugScript) != 0;
998  }
999  bool IsSharedCrossOrigin() const {
1000  return (flags_ & kIsSharedCrossOrigin) != 0;
1001  }
1002  bool IsOpaque() const { return (flags_ & kIsOpaque) != 0; }
1003  int Flags() const { return flags_; }
1004 
1005  private:
1006  enum {
1007  kIsEmbedderDebugScript = 1,
1008  kIsSharedCrossOrigin = 1 << 1,
1009  kIsOpaque = 1 << 2
1010  };
1011  const int flags_;
1012 };
1013 
1014 /**
1015  * The origin, within a file, of a script.
1016  */
1018  public:
1020  Local<Value> resource_name,
1021  Local<Integer> resource_line_offset = Local<Integer>(),
1022  Local<Integer> resource_column_offset = Local<Integer>(),
1023  Local<Boolean> resource_is_shared_cross_origin = Local<Boolean>(),
1024  Local<Integer> script_id = Local<Integer>(),
1025  Local<Boolean> resource_is_embedder_debug_script = Local<Boolean>(),
1026  Local<Value> source_map_url = Local<Value>(),
1027  Local<Boolean> resource_is_opaque = Local<Boolean>());
1028  V8_INLINE Local<Value> ResourceName() const;
1029  V8_INLINE Local<Integer> ResourceLineOffset() const;
1030  V8_INLINE Local<Integer> ResourceColumnOffset() const;
1031  /**
1032  * Returns true for embedder's debugger scripts
1033  */
1034  V8_INLINE Local<Integer> ScriptID() const;
1035  V8_INLINE Local<Value> SourceMapUrl() const;
1036  V8_INLINE ScriptOriginOptions Options() const { return options_; }
1037 
1038  private:
1039  Local<Value> resource_name_;
1040  Local<Integer> resource_line_offset_;
1041  Local<Integer> resource_column_offset_;
1042  ScriptOriginOptions options_;
1043  Local<Integer> script_id_;
1044  Local<Value> source_map_url_;
1045 };
1046 
1047 
1048 /**
1049  * A compiled JavaScript script, not yet tied to a Context.
1050  */
1052  public:
1053  /**
1054  * Binds the script to the currently entered context.
1055  */
1056  Local<Script> BindToCurrentContext();
1057 
1058  int GetId();
1059  Local<Value> GetScriptName();
1060 
1061  /**
1062  * Data read from magic sourceURL comments.
1063  */
1064  Local<Value> GetSourceURL();
1065  /**
1066  * Data read from magic sourceMappingURL comments.
1067  */
1068  Local<Value> GetSourceMappingURL();
1069 
1070  /**
1071  * Returns zero based line number of the code_pos location in the script.
1072  * -1 will be returned if no information available.
1073  */
1074  int GetLineNumber(int code_pos);
1075 
1076  static const int kNoScriptId = 0;
1077 };
1078 
1079 
1080 /**
1081  * A compiled JavaScript script, tied to a Context which was active when the
1082  * script was compiled.
1083  */
1085  public:
1086  /**
1087  * A shorthand for ScriptCompiler::Compile().
1088  */
1089  static V8_DEPRECATE_SOON(
1090  "Use maybe version",
1091  Local<Script> Compile(Local<String> source,
1092  ScriptOrigin* origin = nullptr));
1093  static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1094  Local<Context> context, Local<String> source,
1095  ScriptOrigin* origin = nullptr);
1096 
1097  static Local<Script> V8_DEPRECATE_SOON("Use maybe version",
1098  Compile(Local<String> source,
1099  Local<String> file_name));
1100 
1101  /**
1102  * Runs the script returning the resulting value. It will be run in the
1103  * context in which it was created (ScriptCompiler::CompileBound or
1104  * UnboundScript::BindToCurrentContext()).
1105  */
1106  V8_DEPRECATE_SOON("Use maybe version", Local<Value> Run());
1107  V8_WARN_UNUSED_RESULT MaybeLocal<Value> Run(Local<Context> context);
1108 
1109  /**
1110  * Returns the corresponding context-unbound script.
1111  */
1113 
1114  V8_DEPRECATED("Use GetUnboundScript()->GetId()",
1115  int GetId()) {
1117  }
1118 };
1119 
1120 
1121 /**
1122  * For compiling scripts.
1123  */
1125  public:
1126  /**
1127  * Compilation data that the embedder can cache and pass back to speed up
1128  * future compilations. The data is produced if the CompilerOptions passed to
1129  * the compilation functions in ScriptCompiler contains produce_data_to_cache
1130  * = true. The data to cache can then can be retrieved from
1131  * UnboundScript.
1132  */
1137  };
1138 
1140  : data(NULL),
1141  length(0),
1142  rejected(false),
1144 
1145  // If buffer_policy is BufferNotOwned, the caller keeps the ownership of
1146  // data and guarantees that it stays alive until the CachedData object is
1147  // destroyed. If the policy is BufferOwned, the given data will be deleted
1148  // (with delete[]) when the CachedData object is destroyed.
1149  CachedData(const uint8_t* data, int length,
1150  BufferPolicy buffer_policy = BufferNotOwned);
1151  ~CachedData();
1152  // TODO(marja): Async compilation; add constructors which take a callback
1153  // which will be called when V8 no longer needs the data.
1154  const uint8_t* data;
1155  int length;
1156  bool rejected;
1158 
1159  private:
1160  // Prevent copying. Not implemented.
1161  CachedData(const CachedData&);
1162  CachedData& operator=(const CachedData&);
1163  };
1164 
1165  /**
1166  * Source code which can be then compiled to a UnboundScript or Script.
1167  */
1168  class Source {
1169  public:
1170  // Source takes ownership of CachedData.
1171  V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin,
1172  CachedData* cached_data = NULL);
1173  V8_INLINE Source(Local<String> source_string,
1174  CachedData* cached_data = NULL);
1175  V8_INLINE ~Source();
1176 
1177  // Ownership of the CachedData or its buffers is *not* transferred to the
1178  // caller. The CachedData object is alive as long as the Source object is
1179  // alive.
1180  V8_INLINE const CachedData* GetCachedData() const;
1181 
1182  private:
1183  friend class ScriptCompiler;
1184  // Prevent copying. Not implemented.
1185  Source(const Source&);
1186  Source& operator=(const Source&);
1187 
1188  Local<String> source_string;
1189 
1190  // Origin information
1191  Local<Value> resource_name;
1192  Local<Integer> resource_line_offset;
1193  Local<Integer> resource_column_offset;
1194  ScriptOriginOptions resource_options;
1195  Local<Value> source_map_url;
1196 
1197  // Cached data from previous compilation (if a kConsume*Cache flag is
1198  // set), or hold newly generated cache data (kProduce*Cache flags) are
1199  // set when calling a compile method.
1200  CachedData* cached_data;
1201  };
1202 
1203  /**
1204  * For streaming incomplete script data to V8. The embedder should implement a
1205  * subclass of this class.
1206  */
1208  public:
1209  virtual ~ExternalSourceStream() {}
1210 
1211  /**
1212  * V8 calls this to request the next chunk of data from the embedder. This
1213  * function will be called on a background thread, so it's OK to block and
1214  * wait for the data, if the embedder doesn't have data yet. Returns the
1215  * length of the data returned. When the data ends, GetMoreData should
1216  * return 0. Caller takes ownership of the data.
1217  *
1218  * When streaming UTF-8 data, V8 handles multi-byte characters split between
1219  * two data chunks, but doesn't handle multi-byte characters split between
1220  * more than two data chunks. The embedder can avoid this problem by always
1221  * returning at least 2 bytes of data.
1222  *
1223  * If the embedder wants to cancel the streaming, they should make the next
1224  * GetMoreData call return 0. V8 will interpret it as end of data (and most
1225  * probably, parsing will fail). The streaming task will return as soon as
1226  * V8 has parsed the data it received so far.
1227  */
1228  virtual size_t GetMoreData(const uint8_t** src) = 0;
1229 
1230  /**
1231  * V8 calls this method to set a 'bookmark' at the current position in
1232  * the source stream, for the purpose of (maybe) later calling
1233  * ResetToBookmark. If ResetToBookmark is called later, then subsequent
1234  * calls to GetMoreData should return the same data as they did when
1235  * SetBookmark was called earlier.
1236  *
1237  * The embedder may return 'false' to indicate it cannot provide this
1238  * functionality.
1239  */
1240  virtual bool SetBookmark();
1241 
1242  /**
1243  * V8 calls this to return to a previously set bookmark.
1244  */
1245  virtual void ResetToBookmark();
1246  };
1247 
1248 
1249  /**
1250  * Source code which can be streamed into V8 in pieces. It will be parsed
1251  * while streaming. It can be compiled after the streaming is complete.
1252  * StreamedSource must be kept alive while the streaming task is ran (see
1253  * ScriptStreamingTask below).
1254  */
1256  public:
1258 
1259  StreamedSource(ExternalSourceStream* source_stream, Encoding encoding);
1260  ~StreamedSource();
1261 
1262  // Ownership of the CachedData or its buffers is *not* transferred to the
1263  // caller. The CachedData object is alive as long as the StreamedSource
1264  // object is alive.
1265  const CachedData* GetCachedData() const;
1266 
1267  internal::StreamedSource* impl() const { return impl_; }
1268 
1269  private:
1270  // Prevent copying. Not implemented.
1271  StreamedSource(const StreamedSource&);
1272  StreamedSource& operator=(const StreamedSource&);
1273 
1274  internal::StreamedSource* impl_;
1275  };
1276 
1277  /**
1278  * A streaming task which the embedder must run on a background thread to
1279  * stream scripts into V8. Returned by ScriptCompiler::StartStreamingScript.
1280  */
1282  public:
1283  virtual ~ScriptStreamingTask() {}
1284  virtual void Run() = 0;
1285  };
1286 
1293  };
1294 
1295  /**
1296  * Compiles the specified script (context-independent).
1297  * Cached data as part of the source object can be optionally produced to be
1298  * consumed later to speed up compilation of identical source scripts.
1299  *
1300  * Note that when producing cached data, the source must point to NULL for
1301  * cached data. When consuming cached data, the cached data must have been
1302  * produced by the same version of V8.
1303  *
1304  * \param source Script source code.
1305  * \return Compiled script object (context independent; for running it must be
1306  * bound to a context).
1307  */
1308  static V8_DEPRECATE_SOON("Use maybe version",
1309  Local<UnboundScript> CompileUnbound(
1310  Isolate* isolate, Source* source,
1311  CompileOptions options = kNoCompileOptions));
1313  Isolate* isolate, Source* source,
1314  CompileOptions options = kNoCompileOptions);
1315 
1316  /**
1317  * Compiles the specified script (bound to current context).
1318  *
1319  * \param source Script source code.
1320  * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
1321  * using pre_data speeds compilation if it's done multiple times.
1322  * Owned by caller, no references are kept when this function returns.
1323  * \return Compiled script object, bound to the context that was active
1324  * when this function was called. When run it will always use this
1325  * context.
1326  */
1327  static V8_DEPRECATE_SOON(
1328  "Use maybe version",
1329  Local<Script> Compile(Isolate* isolate, Source* source,
1330  CompileOptions options = kNoCompileOptions));
1331  static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1332  Local<Context> context, Source* source,
1333  CompileOptions options = kNoCompileOptions);
1334 
1335  /**
1336  * Returns a task which streams script data into V8, or NULL if the script
1337  * cannot be streamed. The user is responsible for running the task on a
1338  * background thread and deleting it. When ran, the task starts parsing the
1339  * script, and it will request data from the StreamedSource as needed. When
1340  * ScriptStreamingTask::Run exits, all data has been streamed and the script
1341  * can be compiled (see Compile below).
1342  *
1343  * This API allows to start the streaming with as little data as possible, and
1344  * the remaining data (for example, the ScriptOrigin) is passed to Compile.
1345  */
1347  Isolate* isolate, StreamedSource* source,
1348  CompileOptions options = kNoCompileOptions);
1349 
1350  /**
1351  * Compiles a streamed script (bound to current context).
1352  *
1353  * This can only be called after the streaming has finished
1354  * (ScriptStreamingTask has been run). V8 doesn't construct the source string
1355  * during streaming, so the embedder needs to pass the full source here.
1356  */
1357  static V8_DEPRECATE_SOON(
1358  "Use maybe version",
1359  Local<Script> Compile(Isolate* isolate, StreamedSource* source,
1360  Local<String> full_source_string,
1361  const ScriptOrigin& origin));
1362  static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile(
1363  Local<Context> context, StreamedSource* source,
1364  Local<String> full_source_string, const ScriptOrigin& origin);
1365 
1366  /**
1367  * Return a version tag for CachedData for the current V8 version & flags.
1368  *
1369  * This value is meant only for determining whether a previously generated
1370  * CachedData instance is still valid; the tag has no other meaing.
1371  *
1372  * Background: The data carried by CachedData may depend on the exact
1373  * V8 version number or currently compiler flags. This means when
1374  * persisting CachedData, the embedder must take care to not pass in
1375  * data from another V8 version, or the same version with different
1376  * features enabled.
1377  *
1378  * The easiest way to do so is to clear the embedder's cache on any
1379  * such change.
1380  *
1381  * Alternatively, this tag can be stored alongside the cached data and
1382  * compared when it is being used.
1383  */
1384  static uint32_t CachedDataVersionTag();
1385 
1386  /**
1387  * Compile an ES6 module.
1388  *
1389  * This is an experimental feature.
1390  *
1391  * TODO(adamk): Script is likely the wrong return value for this;
1392  * should return some new Module type.
1393  */
1394  static V8_DEPRECATE_SOON(
1395  "Use maybe version",
1396  Local<Script> CompileModule(Isolate* isolate, Source* source,
1397  CompileOptions options = kNoCompileOptions));
1398  static V8_WARN_UNUSED_RESULT MaybeLocal<Script> CompileModule(
1399  Local<Context> context, Source* source,
1400  CompileOptions options = kNoCompileOptions);
1401 
1402  /**
1403  * Compile a function for a given context. This is equivalent to running
1404  *
1405  * with (obj) {
1406  * return function(args) { ... }
1407  * }
1408  *
1409  * It is possible to specify multiple context extensions (obj in the above
1410  * example).
1411  */
1412  static V8_DEPRECATE_SOON("Use maybe version",
1413  Local<Function> CompileFunctionInContext(
1414  Isolate* isolate, Source* source,
1415  Local<Context> context, size_t arguments_count,
1416  Local<String> arguments[],
1417  size_t context_extension_count,
1418  Local<Object> context_extensions[]));
1420  Local<Context> context, Source* source, size_t arguments_count,
1421  Local<String> arguments[], size_t context_extension_count,
1422  Local<Object> context_extensions[]);
1423 
1424  private:
1425  static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundInternal(
1426  Isolate* isolate, Source* source, CompileOptions options, bool is_module);
1427 };
1428 
1429 
1430 /**
1431  * An error message.
1432  */
1434  public:
1435  Local<String> Get() const;
1436 
1437  V8_DEPRECATE_SOON("Use maybe version", Local<String> GetSourceLine() const);
1439  Local<Context> context) const;
1440 
1441  /**
1442  * Returns the origin for the script from where the function causing the
1443  * error originates.
1444  */
1445  ScriptOrigin GetScriptOrigin() const;
1446 
1447  /**
1448  * Returns the resource name for the script from where the function causing
1449  * the error originates.
1450  */
1451  Local<Value> GetScriptResourceName() const;
1452 
1453  /**
1454  * Exception stack trace. By default stack traces are not captured for
1455  * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
1456  * to change this option.
1457  */
1458  Local<StackTrace> GetStackTrace() const;
1459 
1460  /**
1461  * Returns the number, 1-based, of the line where the error occurred.
1462  */
1463  V8_DEPRECATE_SOON("Use maybe version", int GetLineNumber() const);
1464  V8_WARN_UNUSED_RESULT Maybe<int> GetLineNumber(Local<Context> context) const;
1465 
1466  /**
1467  * Returns the index within the script of the first character where
1468  * the error occurred.
1469  */
1470  int GetStartPosition() const;
1471 
1472  /**
1473  * Returns the index within the script of the last character where
1474  * the error occurred.
1475  */
1476  int GetEndPosition() const;
1477 
1478  /**
1479  * Returns the index within the line of the first character where
1480  * the error occurred.
1481  */
1482  V8_DEPRECATE_SOON("Use maybe version", int GetStartColumn() const);
1483  V8_WARN_UNUSED_RESULT Maybe<int> GetStartColumn(Local<Context> context) const;
1484 
1485  /**
1486  * Returns the index within the line of the last character where
1487  * the error occurred.
1488  */
1489  V8_DEPRECATE_SOON("Use maybe version", int GetEndColumn() const);
1490  V8_WARN_UNUSED_RESULT Maybe<int> GetEndColumn(Local<Context> context) const;
1491 
1492  /**
1493  * Passes on the value set by the embedder when it fed the script from which
1494  * this Message was generated to V8.
1495  */
1496  bool IsSharedCrossOrigin() const;
1497  bool IsOpaque() const;
1498 
1499  // TODO(1245381): Print to a string instead of on a FILE.
1500  static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
1501 
1502  static const int kNoLineNumberInfo = 0;
1503  static const int kNoColumnInfo = 0;
1504  static const int kNoScriptIdInfo = 0;
1505 };
1506 
1507 
1508 /**
1509  * Representation of a JavaScript stack trace. The information collected is a
1510  * snapshot of the execution stack and the information remains valid after
1511  * execution continues.
1512  */
1514  public:
1515  /**
1516  * Flags that determine what information is placed captured for each
1517  * StackFrame when grabbing the current stack trace.
1518  */
1522  kScriptName = 1 << 2,
1523  kFunctionName = 1 << 3,
1524  kIsEval = 1 << 4,
1525  kIsConstructor = 1 << 5,
1527  kScriptId = 1 << 7,
1531  };
1532 
1533  /**
1534  * Returns a StackFrame at a particular index.
1535  */
1536  Local<StackFrame> GetFrame(uint32_t index) const;
1537 
1538  /**
1539  * Returns the number of StackFrames.
1540  */
1541  int GetFrameCount() const;
1542 
1543  /**
1544  * Returns StackTrace as a v8::Array that contains StackFrame objects.
1545  */
1546  Local<Array> AsArray();
1547 
1548  /**
1549  * Grab a snapshot of the current JavaScript execution stack.
1550  *
1551  * \param frame_limit The maximum number of stack frames we want to capture.
1552  * \param options Enumerates the set of things we will capture for each
1553  * StackFrame.
1554  */
1555  static Local<StackTrace> CurrentStackTrace(
1556  Isolate* isolate,
1557  int frame_limit,
1558  StackTraceOptions options = kOverview);
1559 };
1560 
1561 
1562 /**
1563  * A single JavaScript stack frame.
1564  */
1566  public:
1567  /**
1568  * Returns the number, 1-based, of the line for the associate function call.
1569  * This method will return Message::kNoLineNumberInfo if it is unable to
1570  * retrieve the line number, or if kLineNumber was not passed as an option
1571  * when capturing the StackTrace.
1572  */
1573  int GetLineNumber() const;
1574 
1575  /**
1576  * Returns the 1-based column offset on the line for the associated function
1577  * call.
1578  * This method will return Message::kNoColumnInfo if it is unable to retrieve
1579  * the column number, or if kColumnOffset was not passed as an option when
1580  * capturing the StackTrace.
1581  */
1582  int GetColumn() const;
1583 
1584  /**
1585  * Returns the id of the script for the function for this StackFrame.
1586  * This method will return Message::kNoScriptIdInfo if it is unable to
1587  * retrieve the script id, or if kScriptId was not passed as an option when
1588  * capturing the StackTrace.
1589  */
1590  int GetScriptId() const;
1591 
1592  /**
1593  * Returns the name of the resource that contains the script for the
1594  * function for this StackFrame.
1595  */
1596  Local<String> GetScriptName() const;
1597 
1598  /**
1599  * Returns the name of the resource that contains the script for the
1600  * function for this StackFrame or sourceURL value if the script name
1601  * is undefined and its source ends with //# sourceURL=... string or
1602  * deprecated //@ sourceURL=... string.
1603  */
1604  Local<String> GetScriptNameOrSourceURL() const;
1605 
1606  /**
1607  * Returns the name of the function associated with this stack frame.
1608  */
1609  Local<String> GetFunctionName() const;
1610 
1611  /**
1612  * Returns whether or not the associated function is compiled via a call to
1613  * eval().
1614  */
1615  bool IsEval() const;
1616 
1617  /**
1618  * Returns whether or not the associated function is called as a
1619  * constructor via "new".
1620  */
1621  bool IsConstructor() const;
1622 };
1623 
1624 
1625 // A StateTag represents a possible state of the VM.
1627 
1628 
1629 // A RegisterState represents the current state of registers used
1630 // by the sampling profiler API.
1632  RegisterState() : pc(NULL), sp(NULL), fp(NULL) {}
1633  void* pc; // Instruction pointer.
1634  void* sp; // Stack pointer.
1635  void* fp; // Frame pointer.
1636 };
1637 
1638 
1639 // The output structure filled up by GetStackSample API function.
1640 struct SampleInfo {
1643 };
1644 
1645 
1646 /**
1647  * A JSON Parser.
1648  */
1650  public:
1651  /**
1652  * Tries to parse the string |json_string| and returns it as value if
1653  * successful.
1654  *
1655  * \param json_string The string to parse.
1656  * \return The corresponding value if successfully parsed.
1657  */
1658  static V8_DEPRECATE_SOON("Use maybe version",
1659  Local<Value> Parse(Local<String> json_string));
1660  static V8_WARN_UNUSED_RESULT MaybeLocal<Value> Parse(
1661  Isolate* isolate, Local<String> json_string);
1662 };
1663 
1664 
1665 /**
1666  * A map whose keys are referenced weakly. It is similar to JavaScript WeakMap
1667  * but can be created without entering a v8::Context and hence shouldn't
1668  * escape to JavaScript.
1669  */
1670 class V8_EXPORT NativeWeakMap : public Data {
1671  public:
1672  static Local<NativeWeakMap> New(Isolate* isolate);
1673  void Set(Local<Value> key, Local<Value> value);
1674  Local<Value> Get(Local<Value> key);
1675  bool Has(Local<Value> key);
1676  bool Delete(Local<Value> key);
1677 };
1678 
1679 
1680 // --- Value ---
1681 
1682 
1683 /**
1684  * The superclass of all JavaScript values and objects.
1685  */
1686 class V8_EXPORT Value : public Data {
1687  public:
1688  /**
1689  * Returns true if this value is the undefined value. See ECMA-262
1690  * 4.3.10.
1691  */
1692  V8_INLINE bool IsUndefined() const;
1693 
1694  /**
1695  * Returns true if this value is the null value. See ECMA-262
1696  * 4.3.11.
1697  */
1698  V8_INLINE bool IsNull() const;
1699 
1700  /**
1701  * Returns true if this value is true.
1702  */
1703  bool IsTrue() const;
1704 
1705  /**
1706  * Returns true if this value is false.
1707  */
1708  bool IsFalse() const;
1709 
1710  /**
1711  * Returns true if this value is a symbol or a string.
1712  * This is an experimental feature.
1713  */
1714  bool IsName() const;
1715 
1716  /**
1717  * Returns true if this value is an instance of the String type.
1718  * See ECMA-262 8.4.
1719  */
1720  V8_INLINE bool IsString() const;
1721 
1722  /**
1723  * Returns true if this value is a symbol.
1724  * This is an experimental feature.
1725  */
1726  bool IsSymbol() const;
1727 
1728  /**
1729  * Returns true if this value is a function.
1730  */
1731  bool IsFunction() const;
1732 
1733  /**
1734  * Returns true if this value is an array.
1735  */
1736  bool IsArray() const;
1737 
1738  /**
1739  * Returns true if this value is an object.
1740  */
1741  bool IsObject() const;
1742 
1743  /**
1744  * Returns true if this value is boolean.
1745  */
1746  bool IsBoolean() const;
1747 
1748  /**
1749  * Returns true if this value is a number.
1750  */
1751  bool IsNumber() const;
1752 
1753  /**
1754  * Returns true if this value is external.
1755  */
1756  bool IsExternal() const;
1757 
1758  /**
1759  * Returns true if this value is a 32-bit signed integer.
1760  */
1761  bool IsInt32() const;
1762 
1763  /**
1764  * Returns true if this value is a 32-bit unsigned integer.
1765  */
1766  bool IsUint32() const;
1767 
1768  /**
1769  * Returns true if this value is a Date.
1770  */
1771  bool IsDate() const;
1772 
1773  /**
1774  * Returns true if this value is an Arguments object.
1775  */
1776  bool IsArgumentsObject() const;
1777 
1778  /**
1779  * Returns true if this value is a Boolean object.
1780  */
1781  bool IsBooleanObject() const;
1782 
1783  /**
1784  * Returns true if this value is a Number object.
1785  */
1786  bool IsNumberObject() const;
1787 
1788  /**
1789  * Returns true if this value is a String object.
1790  */
1791  bool IsStringObject() const;
1792 
1793  /**
1794  * Returns true if this value is a Symbol object.
1795  * This is an experimental feature.
1796  */
1797  bool IsSymbolObject() const;
1798 
1799  /**
1800  * Returns true if this value is a NativeError.
1801  */
1802  bool IsNativeError() const;
1803 
1804  /**
1805  * Returns true if this value is a RegExp.
1806  */
1807  bool IsRegExp() const;
1808 
1809  /**
1810  * Returns true if this value is a Generator function.
1811  * This is an experimental feature.
1812  */
1813  bool IsGeneratorFunction() const;
1814 
1815  /**
1816  * Returns true if this value is a Generator object (iterator).
1817  * This is an experimental feature.
1818  */
1819  bool IsGeneratorObject() const;
1820 
1821  /**
1822  * Returns true if this value is a Promise.
1823  * This is an experimental feature.
1824  */
1825  bool IsPromise() const;
1826 
1827  /**
1828  * Returns true if this value is a Map.
1829  */
1830  bool IsMap() const;
1831 
1832  /**
1833  * Returns true if this value is a Set.
1834  */
1835  bool IsSet() const;
1836 
1837  /**
1838  * Returns true if this value is a Map Iterator.
1839  */
1840  bool IsMapIterator() const;
1841 
1842  /**
1843  * Returns true if this value is a Set Iterator.
1844  */
1845  bool IsSetIterator() const;
1846 
1847  /**
1848  * Returns true if this value is a WeakMap.
1849  */
1850  bool IsWeakMap() const;
1851 
1852  /**
1853  * Returns true if this value is a WeakSet.
1854  */
1855  bool IsWeakSet() const;
1856 
1857  /**
1858  * Returns true if this value is an ArrayBuffer.
1859  * This is an experimental feature.
1860  */
1861  bool IsArrayBuffer() const;
1862 
1863  /**
1864  * Returns true if this value is an ArrayBufferView.
1865  * This is an experimental feature.
1866  */
1867  bool IsArrayBufferView() const;
1868 
1869  /**
1870  * Returns true if this value is one of TypedArrays.
1871  * This is an experimental feature.
1872  */
1873  bool IsTypedArray() const;
1874 
1875  /**
1876  * Returns true if this value is an Uint8Array.
1877  * This is an experimental feature.
1878  */
1879  bool IsUint8Array() const;
1880 
1881  /**
1882  * Returns true if this value is an Uint8ClampedArray.
1883  * This is an experimental feature.
1884  */
1885  bool IsUint8ClampedArray() const;
1886 
1887  /**
1888  * Returns true if this value is an Int8Array.
1889  * This is an experimental feature.
1890  */
1891  bool IsInt8Array() const;
1892 
1893  /**
1894  * Returns true if this value is an Uint16Array.
1895  * This is an experimental feature.
1896  */
1897  bool IsUint16Array() const;
1898 
1899  /**
1900  * Returns true if this value is an Int16Array.
1901  * This is an experimental feature.
1902  */
1903  bool IsInt16Array() const;
1904 
1905  /**
1906  * Returns true if this value is an Uint32Array.
1907  * This is an experimental feature.
1908  */
1909  bool IsUint32Array() const;
1910 
1911  /**
1912  * Returns true if this value is an Int32Array.
1913  * This is an experimental feature.
1914  */
1915  bool IsInt32Array() const;
1916 
1917  /**
1918  * Returns true if this value is a Float32Array.
1919  * This is an experimental feature.
1920  */
1921  bool IsFloat32Array() const;
1922 
1923  /**
1924  * Returns true if this value is a Float64Array.
1925  * This is an experimental feature.
1926  */
1927  bool IsFloat64Array() const;
1928 
1929  /**
1930  * Returns true if this value is a SIMD Float32x4.
1931  * This is an experimental feature.
1932  */
1933  bool IsFloat32x4() const;
1934 
1935  /**
1936  * Returns true if this value is a DataView.
1937  * This is an experimental feature.
1938  */
1939  bool IsDataView() const;
1940 
1941  /**
1942  * Returns true if this value is a SharedArrayBuffer.
1943  * This is an experimental feature.
1944  */
1945  bool IsSharedArrayBuffer() const;
1946 
1947 
1949  Local<Context> context) const;
1951  Local<Context> context) const;
1953  Local<Context> context) const;
1955  Local<Context> context) const;
1957  Local<Context> context) const;
1959  Local<Context> context) const;
1961  Local<Context> context) const;
1962  V8_WARN_UNUSED_RESULT MaybeLocal<Int32> ToInt32(Local<Context> context) const;
1963 
1964  V8_DEPRECATE_SOON("Use maybe version",
1965  Local<Boolean> ToBoolean(Isolate* isolate) const);
1966  V8_DEPRECATE_SOON("Use maybe version",
1967  Local<Number> ToNumber(Isolate* isolate) const);
1968  V8_DEPRECATE_SOON("Use maybe version",
1969  Local<String> ToString(Isolate* isolate) const);
1970  V8_DEPRECATE_SOON("Use maybe version",
1971  Local<String> ToDetailString(Isolate* isolate) const);
1972  V8_DEPRECATE_SOON("Use maybe version",
1973  Local<Object> ToObject(Isolate* isolate) const);
1974  V8_DEPRECATE_SOON("Use maybe version",
1975  Local<Integer> ToInteger(Isolate* isolate) const);
1976  V8_DEPRECATE_SOON("Use maybe version",
1977  Local<Uint32> ToUint32(Isolate* isolate) const);
1978  V8_DEPRECATE_SOON("Use maybe version",
1979  Local<Int32> ToInt32(Isolate* isolate) const);
1980 
1981  inline V8_DEPRECATE_SOON("Use maybe version",
1982  Local<Boolean> ToBoolean() const);
1983  inline V8_DEPRECATE_SOON("Use maybe version", Local<Number> ToNumber() const);
1984  inline V8_DEPRECATE_SOON("Use maybe version", Local<String> ToString() const);
1985  inline V8_DEPRECATE_SOON("Use maybe version",
1986  Local<String> ToDetailString() const);
1987  inline V8_DEPRECATE_SOON("Use maybe version", Local<Object> ToObject() const);
1988  inline V8_DEPRECATE_SOON("Use maybe version",
1989  Local<Integer> ToInteger() const);
1990  inline V8_DEPRECATE_SOON("Use maybe version", Local<Uint32> ToUint32() const);
1991  inline V8_DEPRECATE_SOON("Use maybe version", Local<Int32> ToInt32() const);
1992 
1993  /**
1994  * Attempts to convert a string to an array index.
1995  * Returns an empty handle if the conversion fails.
1996  */
1997  V8_DEPRECATE_SOON("Use maybe version", Local<Uint32> ToArrayIndex() const);
1999  Local<Context> context) const;
2000 
2001  V8_WARN_UNUSED_RESULT Maybe<bool> BooleanValue(Local<Context> context) const;
2002  V8_WARN_UNUSED_RESULT Maybe<double> NumberValue(Local<Context> context) const;
2003  V8_WARN_UNUSED_RESULT Maybe<int64_t> IntegerValue(
2004  Local<Context> context) const;
2005  V8_WARN_UNUSED_RESULT Maybe<uint32_t> Uint32Value(
2006  Local<Context> context) const;
2007  V8_WARN_UNUSED_RESULT Maybe<int32_t> Int32Value(Local<Context> context) const;
2008 
2009  V8_DEPRECATE_SOON("Use maybe version", bool BooleanValue() const);
2010  V8_DEPRECATE_SOON("Use maybe version", double NumberValue() const);
2011  V8_DEPRECATE_SOON("Use maybe version", int64_t IntegerValue() const);
2012  V8_DEPRECATE_SOON("Use maybe version", uint32_t Uint32Value() const);
2013  V8_DEPRECATE_SOON("Use maybe version", int32_t Int32Value() const);
2014 
2015  /** JS == */
2016  V8_DEPRECATE_SOON("Use maybe version", bool Equals(Local<Value> that) const);
2017  V8_WARN_UNUSED_RESULT Maybe<bool> Equals(Local<Context> context,
2018  Local<Value> that) const;
2019  bool StrictEquals(Local<Value> that) const;
2020  bool SameValue(Local<Value> that) const;
2021 
2022  template <class T> V8_INLINE static Value* Cast(T* value);
2023 
2024  private:
2025  V8_INLINE bool QuickIsUndefined() const;
2026  V8_INLINE bool QuickIsNull() const;
2027  V8_INLINE bool QuickIsString() const;
2028  bool FullIsUndefined() const;
2029  bool FullIsNull() const;
2030  bool FullIsString() const;
2031 };
2032 
2033 
2034 /**
2035  * The superclass of primitive values. See ECMA-262 4.3.2.
2036  */
2037 class V8_EXPORT Primitive : public Value { };
2038 
2039 
2040 /**
2041  * A primitive boolean value (ECMA-262, 4.3.14). Either the true
2042  * or false value.
2043  */
2044 class V8_EXPORT Boolean : public Primitive {
2045  public:
2046  bool Value() const;
2047  V8_INLINE static Boolean* Cast(v8::Value* obj);
2048  V8_INLINE static Local<Boolean> New(Isolate* isolate, bool value);
2049 
2050  private:
2051  static void CheckCast(v8::Value* obj);
2052 };
2053 
2054 
2055 /**
2056  * A superclass for symbols and strings.
2057  */
2058 class V8_EXPORT Name : public Primitive {
2059  public:
2060  /**
2061  * Returns the identity hash for this object. The current implementation
2062  * uses an inline property on the object to store the identity hash.
2063  *
2064  * The return value will never be 0. Also, it is not guaranteed to be
2065  * unique.
2066  */
2067  int GetIdentityHash();
2068 
2069  V8_INLINE static Name* Cast(v8::Value* obj);
2070  private:
2071  static void CheckCast(v8::Value* obj);
2072 };
2073 
2074 
2076 
2077 
2078 /**
2079  * A JavaScript string value (ECMA-262, 4.3.17).
2080  */
2081 class V8_EXPORT String : public Name {
2082  public:
2083  static const int kMaxLength = (1 << 28) - 16;
2084 
2085  enum Encoding {
2089  };
2090  /**
2091  * Returns the number of characters in this string.
2092  */
2093  int Length() const;
2094 
2095  /**
2096  * Returns the number of bytes in the UTF-8 encoded
2097  * representation of this string.
2098  */
2099  int Utf8Length() const;
2100 
2101  /**
2102  * Returns whether this string is known to contain only one byte data.
2103  * Does not read the string.
2104  * False negatives are possible.
2105  */
2106  bool IsOneByte() const;
2107 
2108  /**
2109  * Returns whether this string contain only one byte data.
2110  * Will read the entire string in some cases.
2111  */
2112  bool ContainsOnlyOneByte() const;
2113 
2114  /**
2115  * Write the contents of the string to an external buffer.
2116  * If no arguments are given, expects the buffer to be large
2117  * enough to hold the entire string and NULL terminator. Copies
2118  * the contents of the string and the NULL terminator into the
2119  * buffer.
2120  *
2121  * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
2122  * before the end of the buffer.
2123  *
2124  * Copies up to length characters into the output buffer.
2125  * Only null-terminates if there is enough space in the buffer.
2126  *
2127  * \param buffer The buffer into which the string will be copied.
2128  * \param start The starting position within the string at which
2129  * copying begins.
2130  * \param length The number of characters to copy from the string. For
2131  * WriteUtf8 the number of bytes in the buffer.
2132  * \param nchars_ref The number of characters written, can be NULL.
2133  * \param options Various options that might affect performance of this or
2134  * subsequent operations.
2135  * \return The number of characters copied to the buffer excluding the null
2136  * terminator. For WriteUtf8: The number of bytes copied to the buffer
2137  * including the null terminator (if written).
2138  */
2144  // Used by WriteUtf8 to replace orphan surrogate code units with the
2145  // unicode replacement character. Needs to be set to guarantee valid UTF-8
2146  // output.
2148  };
2149 
2150  // 16-bit character codes.
2151  int Write(uint16_t* buffer,
2152  int start = 0,
2153  int length = -1,
2154  int options = NO_OPTIONS) const;
2155  // One byte characters.
2156  int WriteOneByte(uint8_t* buffer,
2157  int start = 0,
2158  int length = -1,
2159  int options = NO_OPTIONS) const;
2160  // UTF-8 encoded characters.
2161  int WriteUtf8(char* buffer,
2162  int length = -1,
2163  int* nchars_ref = NULL,
2164  int options = NO_OPTIONS) const;
2165 
2166  /**
2167  * A zero length string.
2168  */
2169  V8_INLINE static v8::Local<v8::String> Empty(Isolate* isolate);
2170 
2171  /**
2172  * Returns true if the string is external
2173  */
2174  bool IsExternal() const;
2175 
2176  /**
2177  * Returns true if the string is both external and one-byte.
2178  */
2179  bool IsExternalOneByte() const;
2180 
2182  public:
2184 
2185  protected:
2187 
2188  /**
2189  * Internally V8 will call this Dispose method when the external string
2190  * resource is no longer needed. The default implementation will use the
2191  * delete operator. This method can be overridden in subclasses to
2192  * control how allocated external string resources are disposed.
2193  */
2194  virtual void Dispose() { delete this; }
2195 
2196  private:
2197  // Disallow copying and assigning.
2198  ExternalStringResourceBase(const ExternalStringResourceBase&);
2199  void operator=(const ExternalStringResourceBase&);
2200 
2201  friend class v8::internal::Heap;
2202  };
2203 
2204  /**
2205  * An ExternalStringResource is a wrapper around a two-byte string
2206  * buffer that resides outside V8's heap. Implement an
2207  * ExternalStringResource to manage the life cycle of the underlying
2208  * buffer. Note that the string data must be immutable.
2209  */
2211  : public ExternalStringResourceBase {
2212  public:
2213  /**
2214  * Override the destructor to manage the life cycle of the underlying
2215  * buffer.
2216  */
2218 
2219  /**
2220  * The string data from the underlying buffer.
2221  */
2222  virtual const uint16_t* data() const = 0;
2223 
2224  /**
2225  * The length of the string. That is, the number of two-byte characters.
2226  */
2227  virtual size_t length() const = 0;
2228 
2229  protected:
2231  };
2232 
2233  /**
2234  * An ExternalOneByteStringResource is a wrapper around an one-byte
2235  * string buffer that resides outside V8's heap. Implement an
2236  * ExternalOneByteStringResource to manage the life cycle of the
2237  * underlying buffer. Note that the string data must be immutable
2238  * and that the data must be Latin-1 and not UTF-8, which would require
2239  * special treatment internally in the engine and do not allow efficient
2240  * indexing. Use String::New or convert to 16 bit data for non-Latin1.
2241  */
2242 
2244  : public ExternalStringResourceBase {
2245  public:
2246  /**
2247  * Override the destructor to manage the life cycle of the underlying
2248  * buffer.
2249  */
2251  /** The string data from the underlying buffer.*/
2252  virtual const char* data() const = 0;
2253  /** The number of Latin-1 characters in the string.*/
2254  virtual size_t length() const = 0;
2255  protected:
2257  };
2258 
2259  /**
2260  * If the string is an external string, return the ExternalStringResourceBase
2261  * regardless of the encoding, otherwise return NULL. The encoding of the
2262  * string is returned in encoding_out.
2263  */
2265  Encoding* encoding_out) const;
2266 
2267  /**
2268  * Get the ExternalStringResource for an external string. Returns
2269  * NULL if IsExternal() doesn't return true.
2270  */
2272 
2273  /**
2274  * Get the ExternalOneByteStringResource for an external one-byte string.
2275  * Returns NULL if IsExternalOneByte() doesn't return true.
2276  */
2278 
2279  V8_INLINE static String* Cast(v8::Value* obj);
2280 
2281  // TODO(dcarney): remove with deprecation of New functions.
2283  kNormalString = static_cast<int>(v8::NewStringType::kNormal),
2285  };
2286 
2287  /** Allocates a new string from UTF-8 data.*/
2288  static V8_DEPRECATE_SOON(
2289  "Use maybe version",
2290  Local<String> NewFromUtf8(Isolate* isolate, const char* data,
2292  int length = -1));
2293 
2294  /** Allocates a new string from UTF-8 data. Only returns an empty value when
2295  * length > kMaxLength. **/
2296  static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromUtf8(
2297  Isolate* isolate, const char* data, v8::NewStringType type,
2298  int length = -1);
2299 
2300  /** Allocates a new string from Latin-1 data.*/
2301  static V8_DEPRECATE_SOON(
2302  "Use maybe version",
2303  Local<String> NewFromOneByte(Isolate* isolate, const uint8_t* data,
2305  int length = -1));
2306 
2307  /** Allocates a new string from Latin-1 data. Only returns an empty value
2308  * when length > kMaxLength. **/
2309  static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromOneByte(
2310  Isolate* isolate, const uint8_t* data, v8::NewStringType type,
2311  int length = -1);
2312 
2313  /** Allocates a new string from UTF-16 data.*/
2314  static V8_DEPRECATE_SOON(
2315  "Use maybe version",
2316  Local<String> NewFromTwoByte(Isolate* isolate, const uint16_t* data,
2318  int length = -1));
2319 
2320  /** Allocates a new string from UTF-16 data. Only returns an empty value when
2321  * length > kMaxLength. **/
2322  static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromTwoByte(
2323  Isolate* isolate, const uint16_t* data, v8::NewStringType type,
2324  int length = -1);
2325 
2326  /**
2327  * Creates a new string by concatenating the left and the right strings
2328  * passed in as parameters.
2329  */
2330  static Local<String> Concat(Local<String> left, Local<String> right);
2331 
2332  /**
2333  * Creates a new external string using the data defined in the given
2334  * resource. When the external string is no longer live on V8's heap the
2335  * resource will be disposed by calling its Dispose method. The caller of
2336  * this function should not otherwise delete or modify the resource. Neither
2337  * should the underlying buffer be deallocated or modified except through the
2338  * destructor of the external string resource.
2339  */
2340  static V8_DEPRECATE_SOON(
2341  "Use maybe version",
2342  Local<String> NewExternal(Isolate* isolate,
2343  ExternalStringResource* resource));
2344  static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalTwoByte(
2345  Isolate* isolate, ExternalStringResource* resource);
2346 
2347  /**
2348  * Associate an external string resource with this string by transforming it
2349  * in place so that existing references to this string in the JavaScript heap
2350  * will use the external string resource. The external string resource's
2351  * character contents need to be equivalent to this string.
2352  * Returns true if the string has been changed to be an external string.
2353  * The string is not modified if the operation fails. See NewExternal for
2354  * information on the lifetime of the resource.
2355  */
2356  bool MakeExternal(ExternalStringResource* resource);
2357 
2358  /**
2359  * Creates a new external string using the one-byte data defined in the given
2360  * resource. When the external string is no longer live on V8's heap the
2361  * resource will be disposed by calling its Dispose method. The caller of
2362  * this function should not otherwise delete or modify the resource. Neither
2363  * should the underlying buffer be deallocated or modified except through the
2364  * destructor of the external string resource.
2365  */
2366  static V8_DEPRECATE_SOON(
2367  "Use maybe version",
2368  Local<String> NewExternal(Isolate* isolate,
2369  ExternalOneByteStringResource* resource));
2370  static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalOneByte(
2371  Isolate* isolate, ExternalOneByteStringResource* resource);
2372 
2373  /**
2374  * Associate an external string resource with this string by transforming it
2375  * in place so that existing references to this string in the JavaScript heap
2376  * will use the external string resource. The external string resource's
2377  * character contents need to be equivalent to this string.
2378  * Returns true if the string has been changed to be an external string.
2379  * The string is not modified if the operation fails. See NewExternal for
2380  * information on the lifetime of the resource.
2381  */
2383 
2384  /**
2385  * Returns true if this string can be made external.
2386  */
2387  bool CanMakeExternal();
2388 
2389  /**
2390  * Converts an object to a UTF-8-encoded character array. Useful if
2391  * you want to print the object. If conversion to a string fails
2392  * (e.g. due to an exception in the toString() method of the object)
2393  * then the length() method returns 0 and the * operator returns
2394  * NULL.
2395  */
2397  public:
2398  explicit Utf8Value(Local<v8::Value> obj);
2399  ~Utf8Value();
2400  char* operator*() { return str_; }
2401  const char* operator*() const { return str_; }
2402  int length() const { return length_; }
2403  private:
2404  char* str_;
2405  int length_;
2406 
2407  // Disallow copying and assigning.
2408  Utf8Value(const Utf8Value&);
2409  void operator=(const Utf8Value&);
2410  };
2411 
2412  /**
2413  * Converts an object to a two-byte string.
2414  * If conversion to a string fails (eg. due to an exception in the toString()
2415  * method of the object) then the length() method returns 0 and the * operator
2416  * returns NULL.
2417  */
2419  public:
2420  explicit Value(Local<v8::Value> obj);
2421  ~Value();
2422  uint16_t* operator*() { return str_; }
2423  const uint16_t* operator*() const { return str_; }
2424  int length() const { return length_; }
2425  private:
2426  uint16_t* str_;
2427  int length_;
2428 
2429  // Disallow copying and assigning.
2430  Value(const Value&);
2431  void operator=(const Value&);
2432  };
2433 
2434  private:
2435  void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
2436  Encoding encoding) const;
2437  void VerifyExternalStringResource(ExternalStringResource* val) const;
2438  static void CheckCast(v8::Value* obj);
2439 };
2440 
2441 
2442 /**
2443  * A JavaScript symbol (ECMA-262 edition 6)
2444  *
2445  * This is an experimental feature. Use at your own risk.
2446  */
2447 class V8_EXPORT Symbol : public Name {
2448  public:
2449  // Returns the print name string of the symbol, or undefined if none.
2450  Local<Value> Name() const;
2451 
2452  // Create a symbol. If name is not empty, it will be used as the description.
2453  static Local<Symbol> New(
2454  Isolate *isolate, Local<String> name = Local<String>());
2455 
2456  // Access global symbol registry.
2457  // Note that symbols created this way are never collected, so
2458  // they should only be used for statically fixed properties.
2459  // Also, there is only one global name space for the names used as keys.
2460  // To minimize the potential for clashes, use qualified names as keys.
2461  static Local<Symbol> For(Isolate *isolate, Local<String> name);
2462 
2463  // Retrieve a global symbol. Similar to |For|, but using a separate
2464  // registry that is not accessible by (and cannot clash with) JavaScript code.
2465  static Local<Symbol> ForApi(Isolate *isolate, Local<String> name);
2466 
2467  // Well-known symbols
2468  static Local<Symbol> GetIterator(Isolate* isolate);
2469  static Local<Symbol> GetUnscopables(Isolate* isolate);
2470  static Local<Symbol> GetToStringTag(Isolate* isolate);
2471 
2472  V8_INLINE static Symbol* Cast(v8::Value* obj);
2473 
2474  private:
2475  Symbol();
2476  static void CheckCast(v8::Value* obj);
2477 };
2478 
2479 
2480 /**
2481  * A JavaScript number value (ECMA-262, 4.3.20)
2482  */
2483 class V8_EXPORT Number : public Primitive {
2484  public:
2485  double Value() const;
2486  static Local<Number> New(Isolate* isolate, double value);
2487  V8_INLINE static Number* Cast(v8::Value* obj);
2488  private:
2489  Number();
2490  static void CheckCast(v8::Value* obj);
2491 };
2492 
2493 
2494 /**
2495  * A JavaScript value representing a signed integer.
2496  */
2497 class V8_EXPORT Integer : public Number {
2498  public:
2499  static Local<Integer> New(Isolate* isolate, int32_t value);
2500  static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
2501  int64_t Value() const;
2502  V8_INLINE static Integer* Cast(v8::Value* obj);
2503  private:
2504  Integer();
2505  static void CheckCast(v8::Value* obj);
2506 };
2507 
2508 
2509 /**
2510  * A JavaScript value representing a 32-bit signed integer.
2511  */
2512 class V8_EXPORT Int32 : public Integer {
2513  public:
2514  int32_t Value() const;
2515  V8_INLINE static Int32* Cast(v8::Value* obj);
2516 
2517  private:
2518  Int32();
2519  static void CheckCast(v8::Value* obj);
2520 };
2521 
2522 
2523 /**
2524  * A JavaScript value representing a 32-bit unsigned integer.
2525  */
2526 class V8_EXPORT Uint32 : public Integer {
2527  public:
2528  uint32_t Value() const;
2529  V8_INLINE static Uint32* Cast(v8::Value* obj);
2530 
2531  private:
2532  Uint32();
2533  static void CheckCast(v8::Value* obj);
2534 };
2535 
2536 
2538  None = 0,
2539  ReadOnly = 1 << 0,
2540  DontEnum = 1 << 1,
2541  DontDelete = 1 << 2
2542 };
2543 
2544 /**
2545  * Accessor[Getter|Setter] are used as callback functions when
2546  * setting|getting a particular property. See Object and ObjectTemplate's
2547  * method SetAccessor.
2548  */
2549 typedef void (*AccessorGetterCallback)(
2550  Local<String> property,
2551  const PropertyCallbackInfo<Value>& info);
2553  Local<Name> property,
2554  const PropertyCallbackInfo<Value>& info);
2555 
2556 
2557 typedef void (*AccessorSetterCallback)(
2558  Local<String> property,
2559  Local<Value> value,
2560  const PropertyCallbackInfo<void>& info);
2562  Local<Name> property,
2563  Local<Value> value,
2564  const PropertyCallbackInfo<void>& info);
2565 
2566 
2567 /**
2568  * Access control specifications.
2569  *
2570  * Some accessors should be accessible across contexts. These
2571  * accessors have an explicit access control parameter which specifies
2572  * the kind of cross-context access that should be allowed.
2573  *
2574  * TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused.
2575  */
2577  DEFAULT = 0,
2579  ALL_CAN_WRITE = 1 << 1,
2581 };
2582 
2583 
2584 /**
2585  * A JavaScript object (ECMA-262, 4.3.3)
2586  */
2587 class V8_EXPORT Object : public Value {
2588  public:
2589  V8_DEPRECATE_SOON("Use maybe version",
2590  bool Set(Local<Value> key, Local<Value> value));
2591  V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context,
2592  Local<Value> key, Local<Value> value);
2593 
2594  V8_DEPRECATE_SOON("Use maybe version",
2595  bool Set(uint32_t index, Local<Value> value));
2596  V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, uint32_t index,
2597  Local<Value> value);
2598 
2599  // Implements CreateDataProperty (ECMA-262, 7.3.4).
2600  //
2601  // Defines a configurable, writable, enumerable property with the given value
2602  // on the object unless the property already exists and is not configurable
2603  // or the object is not extensible.
2604  //
2605  // Returns true on success.
2606  V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2607  Local<Name> key,
2608  Local<Value> value);
2609  V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context,
2610  uint32_t index,
2611  Local<Value> value);
2612 
2613  // Implements DefineOwnProperty.
2614  //
2615  // In general, CreateDataProperty will be faster, however, does not allow
2616  // for specifying attributes.
2617  //
2618  // Returns true on success.
2620  Local<Context> context, Local<Name> key, Local<Value> value,
2621  PropertyAttribute attributes = None);
2622 
2623  // Sets an own property on this object bypassing interceptors and
2624  // overriding accessors or read-only properties.
2625  //
2626  // Note that if the object has an interceptor the property will be set
2627  // locally, but since the interceptor takes precedence the local property
2628  // will only be returned if the interceptor doesn't return a value.
2629  //
2630  // Note also that this only works for named properties.
2631  V8_DEPRECATE_SOON("Use CreateDataProperty",
2632  bool ForceSet(Local<Value> key, Local<Value> value,
2633  PropertyAttribute attribs = None));
2634  V8_DEPRECATE_SOON("Use CreateDataProperty",
2635  Maybe<bool> ForceSet(Local<Context> context,
2636  Local<Value> key, Local<Value> value,
2637  PropertyAttribute attribs = None));
2638 
2639  V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(Local<Value> key));
2640  V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2641  Local<Value> key);
2642 
2643  V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(uint32_t index));
2644  V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2645  uint32_t index);
2646 
2647  /**
2648  * Gets the property attributes of a property which can be None or
2649  * any combination of ReadOnly, DontEnum and DontDelete. Returns
2650  * None when the property doesn't exist.
2651  */
2652  V8_DEPRECATE_SOON("Use maybe version",
2653  PropertyAttribute GetPropertyAttributes(Local<Value> key));
2655  Local<Context> context, Local<Value> key);
2656 
2657  /**
2658  * Returns Object.getOwnPropertyDescriptor as per ES5 section 15.2.3.3.
2659  */
2660  V8_DEPRECATE_SOON("Use maybe version",
2661  Local<Value> GetOwnPropertyDescriptor(Local<String> key));
2663  Local<Context> context, Local<String> key);
2664 
2665  V8_DEPRECATE_SOON("Use maybe version", bool Has(Local<Value> key));
2666  V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
2667  Local<Value> key);
2668 
2669  V8_DEPRECATE_SOON("Use maybe version", bool Delete(Local<Value> key));
2670  // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2671  Maybe<bool> Delete(Local<Context> context, Local<Value> key);
2672 
2673  V8_DEPRECATE_SOON("Use maybe version", bool Has(uint32_t index));
2674  V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, uint32_t index);
2675 
2676  V8_DEPRECATE_SOON("Use maybe version", bool Delete(uint32_t index));
2677  // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2678  Maybe<bool> Delete(Local<Context> context, uint32_t index);
2679 
2680  V8_DEPRECATE_SOON("Use maybe version",
2681  bool SetAccessor(Local<String> name,
2682  AccessorGetterCallback getter,
2683  AccessorSetterCallback setter = 0,
2684  Local<Value> data = Local<Value>(),
2685  AccessControl settings = DEFAULT,
2686  PropertyAttribute attribute = None));
2687  V8_DEPRECATE_SOON("Use maybe version",
2688  bool SetAccessor(Local<Name> name,
2690  AccessorNameSetterCallback setter = 0,
2691  Local<Value> data = Local<Value>(),
2692  AccessControl settings = DEFAULT,
2693  PropertyAttribute attribute = None));
2694  // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
2695  Maybe<bool> SetAccessor(Local<Context> context, Local<Name> name,
2697  AccessorNameSetterCallback setter = 0,
2698  MaybeLocal<Value> data = MaybeLocal<Value>(),
2699  AccessControl settings = DEFAULT,
2700  PropertyAttribute attribute = None);
2701 
2702  void SetAccessorProperty(Local<Name> name, Local<Function> getter,
2703  Local<Function> setter = Local<Function>(),
2704  PropertyAttribute attribute = None,
2705  AccessControl settings = DEFAULT);
2706 
2707  /**
2708  * Returns an array containing the names of the enumerable properties
2709  * of this object, including properties from prototype objects. The
2710  * array returned by this method contains the same values as would
2711  * be enumerated by a for-in statement over this object.
2712  */
2713  V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetPropertyNames());
2715  Local<Context> context);
2716 
2717  /**
2718  * This function has the same functionality as GetPropertyNames but
2719  * the returned array doesn't contain the names of properties from
2720  * prototype objects.
2721  */
2722  V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetOwnPropertyNames());
2724  Local<Context> context);
2725 
2726  /**
2727  * Get the prototype object. This does not skip objects marked to
2728  * be skipped by __proto__ and it does not consult the security
2729  * handler.
2730  */
2731  Local<Value> GetPrototype();
2732 
2733  /**
2734  * Set the prototype object. This does not skip objects marked to
2735  * be skipped by __proto__ and it does not consult the security
2736  * handler.
2737  */
2738  V8_DEPRECATE_SOON("Use maybe version",
2739  bool SetPrototype(Local<Value> prototype));
2740  V8_WARN_UNUSED_RESULT Maybe<bool> SetPrototype(Local<Context> context,
2741  Local<Value> prototype);
2742 
2743  /**
2744  * Finds an instance of the given function template in the prototype
2745  * chain.
2746  */
2748 
2749  /**
2750  * Call builtin Object.prototype.toString on this object.
2751  * This is different from Value::ToString() that may call
2752  * user-defined toString function. This one does not.
2753  */
2754  V8_DEPRECATE_SOON("Use maybe version", Local<String> ObjectProtoToString());
2756  Local<Context> context);
2757 
2758  /**
2759  * Returns the name of the function invoked as a constructor for this object.
2760  */
2761  Local<String> GetConstructorName();
2762 
2763  /** Gets the number of internal fields for this Object. */
2764  int InternalFieldCount();
2765 
2766  /** Same as above, but works for Persistents */
2768  const PersistentBase<Object>& object) {
2769  return object.val_->InternalFieldCount();
2770  }
2771 
2772  /** Gets the value from an internal field. */
2773  V8_INLINE Local<Value> GetInternalField(int index);
2774 
2775  /** Sets the value in an internal field. */
2776  void SetInternalField(int index, Local<Value> value);
2777 
2778  /**
2779  * Gets a 2-byte-aligned native pointer from an internal field. This field
2780  * must have been set by SetAlignedPointerInInternalField, everything else
2781  * leads to undefined behavior.
2782  */
2784 
2785  /** Same as above, but works for Persistents */
2787  const PersistentBase<Object>& object, int index) {
2788  return object.val_->GetAlignedPointerFromInternalField(index);
2789  }
2790 
2791  /**
2792  * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
2793  * a field, GetAlignedPointerFromInternalField must be used, everything else
2794  * leads to undefined behavior.
2795  */
2796  void SetAlignedPointerInInternalField(int index, void* value);
2797 
2798  // Testers for local properties.
2799  V8_DEPRECATE_SOON("Use maybe version",
2800  bool HasOwnProperty(Local<String> key));
2801  V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context,
2802  Local<Name> key);
2803  V8_DEPRECATE_SOON("Use maybe version",
2804  bool HasRealNamedProperty(Local<String> key));
2805  V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedProperty(Local<Context> context,
2806  Local<Name> key);
2807  V8_DEPRECATE_SOON("Use maybe version",
2808  bool HasRealIndexedProperty(uint32_t index));
2810  Local<Context> context, uint32_t index);
2811  V8_DEPRECATE_SOON("Use maybe version",
2812  bool HasRealNamedCallbackProperty(Local<String> key));
2814  Local<Context> context, Local<Name> key);
2815 
2816  /**
2817  * If result.IsEmpty() no real property was located in the prototype chain.
2818  * This means interceptors in the prototype chain are not called.
2819  */
2821  "Use maybe version",
2822  Local<Value> GetRealNamedPropertyInPrototypeChain(Local<String> key));
2824  Local<Context> context, Local<Name> key);
2825 
2826  /**
2827  * Gets the property attributes of a real property in the prototype chain,
2828  * which can be None or any combination of ReadOnly, DontEnum and DontDelete.
2829  * Interceptors in the prototype chain are not called.
2830  */
2832  "Use maybe version",
2833  Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain(
2834  Local<String> key));
2837  Local<Name> key);
2838 
2839  /**
2840  * If result.IsEmpty() no real property was located on the object or
2841  * in the prototype chain.
2842  * This means interceptors in the prototype chain are not called.
2843  */
2844  V8_DEPRECATE_SOON("Use maybe version",
2845  Local<Value> GetRealNamedProperty(Local<String> key));
2847  Local<Context> context, Local<Name> key);
2848 
2849  /**
2850  * Gets the property attributes of a real property which can be
2851  * None or any combination of ReadOnly, DontEnum and DontDelete.
2852  * Interceptors in the prototype chain are not called.
2853  */
2854  V8_DEPRECATE_SOON("Use maybe version",
2855  Maybe<PropertyAttribute> GetRealNamedPropertyAttributes(
2856  Local<String> key));
2858  Local<Context> context, Local<Name> key);
2859 
2860  /** Tests for a named lookup interceptor.*/
2862 
2863  /** Tests for an index lookup interceptor.*/
2865 
2866  /**
2867  * Returns the identity hash for this object. The current implementation
2868  * uses a hidden property on the object to store the identity hash.
2869  *
2870  * The return value will never be 0. Also, it is not guaranteed to be
2871  * unique.
2872  */
2873  int GetIdentityHash();
2874 
2875  /**
2876  * Access hidden properties on JavaScript objects. These properties are
2877  * hidden from the executing JavaScript and only accessible through the V8
2878  * C++ API. Hidden properties introduced by V8 internally (for example the
2879  * identity hash) are prefixed with "v8::".
2880  */
2881  // TODO(dcarney): convert these to take a isolate and optionally bailout?
2882  bool SetHiddenValue(Local<String> key, Local<Value> value);
2883  Local<Value> GetHiddenValue(Local<String> key);
2884  bool DeleteHiddenValue(Local<String> key);
2885 
2886  /**
2887  * Clone this object with a fast but shallow copy. Values will point
2888  * to the same values as the original object.
2889  */
2890  // TODO(dcarney): take an isolate and optionally bail out?
2891  Local<Object> Clone();
2892 
2893  /**
2894  * Returns the context in which the object was created.
2895  */
2896  Local<Context> CreationContext();
2897 
2898  /**
2899  * Checks whether a callback is set by the
2900  * ObjectTemplate::SetCallAsFunctionHandler method.
2901  * When an Object is callable this method returns true.
2902  */
2903  bool IsCallable();
2904 
2905  /**
2906  * Call an Object as a function if a callback is set by the
2907  * ObjectTemplate::SetCallAsFunctionHandler method.
2908  */
2909  V8_DEPRECATE_SOON("Use maybe version",
2910  Local<Value> CallAsFunction(Local<Value> recv, int argc,
2911  Local<Value> argv[]));
2912  V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsFunction(Local<Context> context,
2913  Local<Value> recv,
2914  int argc,
2915  Local<Value> argv[]);
2916 
2917  /**
2918  * Call an Object as a constructor if a callback is set by the
2919  * ObjectTemplate::SetCallAsFunctionHandler method.
2920  * Note: This method behaves like the Function::NewInstance method.
2921  */
2922  V8_DEPRECATE_SOON("Use maybe version",
2923  Local<Value> CallAsConstructor(int argc,
2924  Local<Value> argv[]));
2926  Local<Context> context, int argc, Local<Value> argv[]);
2927 
2928  /**
2929  * Return the isolate to which the Object belongs to.
2930  */
2931  V8_DEPRECATE_SOON("Keep track of isolate correctly", Isolate* GetIsolate());
2932 
2933  static Local<Object> New(Isolate* isolate);
2934 
2935  V8_INLINE static Object* Cast(Value* obj);
2936 
2937  private:
2938  Object();
2939  static void CheckCast(Value* obj);
2940  Local<Value> SlowGetInternalField(int index);
2941  void* SlowGetAlignedPointerFromInternalField(int index);
2942 };
2943 
2944 
2945 /**
2946  * An instance of the built-in array constructor (ECMA-262, 15.4.2).
2947  */
2948 class V8_EXPORT Array : public Object {
2949  public:
2950  uint32_t Length() const;
2951 
2952  /**
2953  * Clones an element at index |index|. Returns an empty
2954  * handle if cloning fails (for any reason).
2955  */
2956  V8_DEPRECATE_SOON("Use maybe version",
2957  Local<Object> CloneElementAt(uint32_t index));
2959  Local<Context> context, uint32_t index);
2960 
2961  /**
2962  * Creates a JavaScript array with the given length. If the length
2963  * is negative the returned array will have length 0.
2964  */
2965  static Local<Array> New(Isolate* isolate, int length = 0);
2966 
2967  V8_INLINE static Array* Cast(Value* obj);
2968  private:
2969  Array();
2970  static void CheckCast(Value* obj);
2971 };
2972 
2973 
2974 /**
2975  * An instance of the built-in Map constructor (ECMA-262, 6th Edition, 23.1.1).
2976  */
2977 class V8_EXPORT Map : public Object {
2978  public:
2979  size_t Size() const;
2980  void Clear();
2981  V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context,
2982  Local<Value> key);
2983  V8_WARN_UNUSED_RESULT MaybeLocal<Map> Set(Local<Context> context,
2984  Local<Value> key,
2985  Local<Value> value);
2986  V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
2987  Local<Value> key);
2988  V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
2989  Local<Value> key);
2990 
2991  /**
2992  * Returns an array of length Size() * 2, where index N is the Nth key and
2993  * index N + 1 is the Nth value.
2994  */
2995  Local<Array> AsArray() const;
2996 
2997  /**
2998  * Creates a new empty Map.
2999  */
3000  static Local<Map> New(Isolate* isolate);
3001 
3002  /**
3003  * Creates a new Map containing the elements of array, which must be formatted
3004  * in the same manner as the array returned from AsArray().
3005  * Guaranteed to be side-effect free if the array contains no holes.
3006  */
3007  static V8_WARN_UNUSED_RESULT MaybeLocal<Map> FromArray(Local<Context> context,
3008  Local<Array> array);
3009 
3010  V8_INLINE static Map* Cast(Value* obj);
3011 
3012  private:
3013  Map();
3014  static void CheckCast(Value* obj);
3015 };
3016 
3017 
3018 /**
3019  * An instance of the built-in Set constructor (ECMA-262, 6th Edition, 23.2.1).
3020  */
3021 class V8_EXPORT Set : public Object {
3022  public:
3023  size_t Size() const;
3024  void Clear();
3025  V8_WARN_UNUSED_RESULT MaybeLocal<Set> Add(Local<Context> context,
3026  Local<Value> key);
3027  V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context,
3028  Local<Value> key);
3029  V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context,
3030  Local<Value> key);
3031 
3032  /**
3033  * Returns an array of the keys in this Set.
3034  */
3035  Local<Array> AsArray() const;
3036 
3037  /**
3038  * Creates a new empty Set.
3039  */
3040  static Local<Set> New(Isolate* isolate);
3041 
3042  /**
3043  * Creates a new Set containing the items in array.
3044  * Guaranteed to be side-effect free if the array contains no holes.
3045  */
3046  static V8_WARN_UNUSED_RESULT MaybeLocal<Set> FromArray(Local<Context> context,
3047  Local<Array> array);
3048 
3049  V8_INLINE static Set* Cast(Value* obj);
3050 
3051  private:
3052  Set();
3053  static void CheckCast(Value* obj);
3054 };
3055 
3056 
3057 template<typename T>
3058 class ReturnValue {
3059  public:
3060  template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
3061  : value_(that.value_) {
3062  TYPE_CHECK(T, S);
3063  }
3064  // Local setters
3065  template <typename S>
3066  V8_INLINE V8_DEPRECATE_SOON("Use Global<> instead",
3067  void Set(const Persistent<S>& handle));
3068  template <typename S>
3069  V8_INLINE void Set(const Global<S>& handle);
3070  template <typename S>
3071  V8_INLINE void Set(const Local<S> handle);
3072  // Fast primitive setters
3073  V8_INLINE void Set(bool value);
3074  V8_INLINE void Set(double i);
3075  V8_INLINE void Set(int32_t i);
3076  V8_INLINE void Set(uint32_t i);
3077  // Fast JS primitive setters
3078  V8_INLINE void SetNull();
3079  V8_INLINE void SetUndefined();
3080  V8_INLINE void SetEmptyString();
3081  // Convenience getter for Isolate
3083 
3084  // Pointer setter: Uncompilable to prevent inadvertent misuse.
3085  template <typename S>
3086  V8_INLINE void Set(S* whatever);
3087 
3088  private:
3089  template<class F> friend class ReturnValue;
3090  template<class F> friend class FunctionCallbackInfo;
3091  template<class F> friend class PropertyCallbackInfo;
3092  template <class F, class G, class H>
3094  V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; }
3095  V8_INLINE internal::Object* GetDefaultValue();
3096  V8_INLINE explicit ReturnValue(internal::Object** slot);
3097  internal::Object** value_;
3098 };
3099 
3100 
3101 /**
3102  * The argument information given to function call callbacks. This
3103  * class provides access to information about the context of the call,
3104  * including the receiver, the number and values of arguments, and
3105  * the holder of the function.
3106  */
3107 template<typename T>
3108 class FunctionCallbackInfo {
3109  public:
3110  V8_INLINE int Length() const;
3111  V8_INLINE Local<Value> operator[](int i) const;
3112  V8_INLINE Local<Function> Callee() const;
3113  V8_INLINE Local<Object> This() const;
3114  V8_INLINE Local<Object> Holder() const;
3115  V8_INLINE bool IsConstructCall() const;
3116  V8_INLINE Local<Value> Data() const;
3117  V8_INLINE Isolate* GetIsolate() const;
3118  V8_INLINE ReturnValue<T> GetReturnValue() const;
3119  // This shouldn't be public, but the arm compiler needs it.
3120  static const int kArgsLength = 7;
3121 
3122  protected:
3125  static const int kHolderIndex = 0;
3126  static const int kIsolateIndex = 1;
3127  static const int kReturnValueDefaultValueIndex = 2;
3128  static const int kReturnValueIndex = 3;
3129  static const int kDataIndex = 4;
3130  static const int kCalleeIndex = 5;
3131  static const int kContextSaveIndex = 6;
3132 
3133  V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
3134  internal::Object** values,
3135  int length,
3136  bool is_construct_call);
3138  internal::Object** values_;
3139  int length_;
3141 };
3142 
3143 
3144 /**
3145  * The information passed to a property callback about the context
3146  * of the property access.
3147  */
3148 template<typename T>
3149 class PropertyCallbackInfo {
3150  public:
3151  V8_INLINE Isolate* GetIsolate() const;
3152  V8_INLINE Local<Value> Data() const;
3153  V8_INLINE Local<Object> This() const;
3154  V8_INLINE Local<Object> Holder() const;
3155  V8_INLINE ReturnValue<T> GetReturnValue() const;
3156  // This shouldn't be public, but the arm compiler needs it.
3157  static const int kArgsLength = 6;
3158 
3159  protected:
3160  friend class MacroAssembler;
3163  static const int kHolderIndex = 0;
3164  static const int kIsolateIndex = 1;
3165  static const int kReturnValueDefaultValueIndex = 2;
3166  static const int kReturnValueIndex = 3;
3167  static const int kDataIndex = 4;
3168  static const int kThisIndex = 5;
3169 
3170  V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
3171  internal::Object** args_;
3172 };
3173 
3174 
3175 typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
3176 
3177 
3178 /**
3179  * A JavaScript function object (ECMA-262, 15.3).
3180  */
3181 class V8_EXPORT Function : public Object {
3182  public:
3183  /**
3184  * Create a function in the current execution context
3185  * for a given FunctionCallback.
3186  */
3187  static MaybeLocal<Function> New(Local<Context> context,
3188  FunctionCallback callback,
3189  Local<Value> data = Local<Value>(),
3190  int length = 0);
3191  static V8_DEPRECATE_SOON(
3192  "Use maybe version",
3193  Local<Function> New(Isolate* isolate, FunctionCallback callback,
3194  Local<Value> data = Local<Value>(), int length = 0));
3195 
3196  V8_DEPRECATE_SOON("Use maybe version",
3197  Local<Object> NewInstance(int argc, Local<Value> argv[])
3198  const);
3200  Local<Context> context, int argc, Local<Value> argv[]) const;
3201 
3202  V8_DEPRECATE_SOON("Use maybe version", Local<Object> NewInstance() const);
3204  Local<Context> context) const {
3205  return NewInstance(context, 0, nullptr);
3206  }
3207 
3208  V8_DEPRECATE_SOON("Use maybe version",
3209  Local<Value> Call(Local<Value> recv, int argc,
3210  Local<Value> argv[]));
3211  V8_WARN_UNUSED_RESULT MaybeLocal<Value> Call(Local<Context> context,
3212  Local<Value> recv, int argc,
3213  Local<Value> argv[]);
3214 
3215  void SetName(Local<String> name);
3216  Local<Value> GetName() const;
3217 
3218  /**
3219  * Name inferred from variable or property assignment of this function.
3220  * Used to facilitate debugging and profiling of JavaScript code written
3221  * in an OO style, where many functions are anonymous but are assigned
3222  * to object properties.
3223  */
3224  Local<Value> GetInferredName() const;
3225 
3226  /**
3227  * User-defined name assigned to the "displayName" property of this function.
3228  * Used to facilitate debugging and profiling of JavaScript code.
3229  */
3230  Local<Value> GetDisplayName() const;
3231 
3232  /**
3233  * Returns zero based line number of function body and
3234  * kLineOffsetNotFound if no information available.
3235  */
3236  int GetScriptLineNumber() const;
3237  /**
3238  * Returns zero based column number of function body and
3239  * kLineOffsetNotFound if no information available.
3240  */
3241  int GetScriptColumnNumber() const;
3242 
3243  /**
3244  * Tells whether this function is builtin.
3245  */
3246  bool IsBuiltin() const;
3247 
3248  /**
3249  * Returns scriptId.
3250  */
3251  int ScriptId() const;
3252 
3253  /**
3254  * Returns the original function if this function is bound, else returns
3255  * v8::Undefined.
3256  */
3257  Local<Value> GetBoundFunction() const;
3258 
3259  ScriptOrigin GetScriptOrigin() const;
3260  V8_INLINE static Function* Cast(Value* obj);
3261  static const int kLineOffsetNotFound;
3262 
3263  private:
3264  Function();
3265  static void CheckCast(Value* obj);
3266 };
3267 
3268 
3269 /**
3270  * An instance of the built-in Promise constructor (ES6 draft).
3271  * This API is experimental. Only works with --harmony flag.
3272  */
3273 class V8_EXPORT Promise : public Object {
3274  public:
3275  class V8_EXPORT Resolver : public Object {
3276  public:
3277  /**
3278  * Create a new resolver, along with an associated promise in pending state.
3279  */
3280  static V8_DEPRECATE_SOON("Use maybe version",
3281  Local<Resolver> New(Isolate* isolate));
3282  static V8_WARN_UNUSED_RESULT MaybeLocal<Resolver> New(
3283  Local<Context> context);
3284 
3285  /**
3286  * Extract the associated promise.
3287  */
3288  Local<Promise> GetPromise();
3289 
3290  /**
3291  * Resolve/reject the associated promise with a given value.
3292  * Ignored if the promise is no longer pending.
3293  */
3294  V8_DEPRECATE_SOON("Use maybe version", void Resolve(Local<Value> value));
3295  // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3296  Maybe<bool> Resolve(Local<Context> context, Local<Value> value);
3297 
3298  V8_DEPRECATE_SOON("Use maybe version", void Reject(Local<Value> value));
3299  // TODO(dcarney): mark V8_WARN_UNUSED_RESULT
3300  Maybe<bool> Reject(Local<Context> context, Local<Value> value);
3301 
3302  V8_INLINE static Resolver* Cast(Value* obj);
3303 
3304  private:
3305  Resolver();
3306  static void CheckCast(Value* obj);
3307  };
3308 
3309  /**
3310  * Register a resolution/rejection handler with a promise.
3311  * The handler is given the respective resolution/rejection value as
3312  * an argument. If the promise is already resolved/rejected, the handler is
3313  * invoked at the end of turn.
3314  */
3315  V8_DEPRECATE_SOON("Use maybe version",
3316  Local<Promise> Chain(Local<Function> handler));
3317  V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Chain(Local<Context> context,
3318  Local<Function> handler);
3319 
3320  V8_DEPRECATE_SOON("Use maybe version",
3321  Local<Promise> Catch(Local<Function> handler));
3322  V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Catch(Local<Context> context,
3323  Local<Function> handler);
3324 
3325  V8_DEPRECATE_SOON("Use maybe version",
3326  Local<Promise> Then(Local<Function> handler));
3327  V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Then(Local<Context> context,
3328  Local<Function> handler);
3329 
3330  /**
3331  * Returns true if the promise has at least one derived promise, and
3332  * therefore resolve/reject handlers (including default handler).
3333  */
3334  bool HasHandler();
3335 
3336  V8_INLINE static Promise* Cast(Value* obj);
3337 
3338  private:
3339  Promise();
3340  static void CheckCast(Value* obj);
3341 };
3342 
3343 
3344 #ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
3345 // The number of required internal fields can be defined by embedder.
3346 #define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
3347 #endif
3348 
3349 
3351 
3352 
3353 /**
3354  * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
3355  * This API is experimental and may change significantly.
3356  */
3357 class V8_EXPORT ArrayBuffer : public Object {
3358  public:
3359  /**
3360  * Allocator that V8 uses to allocate |ArrayBuffer|'s memory.
3361  * The allocator is a global V8 setting. It has to be set via
3362  * Isolate::CreateParams.
3363  *
3364  * This API is experimental and may change significantly.
3365  */
3366  class V8_EXPORT Allocator { // NOLINT
3367  public:
3368  virtual ~Allocator() {}
3369 
3370  /**
3371  * Allocate |length| bytes. Return NULL if allocation is not successful.
3372  * Memory should be initialized to zeroes.
3373  */
3374  virtual void* Allocate(size_t length) = 0;
3375 
3376  /**
3377  * Allocate |length| bytes. Return NULL if allocation is not successful.
3378  * Memory does not have to be initialized.
3379  */
3380  virtual void* AllocateUninitialized(size_t length) = 0;
3381  /**
3382  * Free the memory block of size |length|, pointed to by |data|.
3383  * That memory is guaranteed to be previously allocated by |Allocate|.
3384  */
3385  virtual void Free(void* data, size_t length) = 0;
3386  };
3387 
3388  /**
3389  * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
3390  * returns an instance of this class, populated, with a pointer to data
3391  * and byte length.
3392  *
3393  * The Data pointer of ArrayBuffer::Contents is always allocated with
3394  * Allocator::Allocate that is set via Isolate::CreateParams.
3395  *
3396  * This API is experimental and may change significantly.
3397  */
3398  class V8_EXPORT Contents { // NOLINT
3399  public:
3400  Contents() : data_(NULL), byte_length_(0) {}
3401 
3402  void* Data() const { return data_; }
3403  size_t ByteLength() const { return byte_length_; }
3404 
3405  private:
3406  void* data_;
3407  size_t byte_length_;
3408 
3409  friend class ArrayBuffer;
3410  };
3411 
3412 
3413  /**
3414  * Data length in bytes.
3415  */
3416  size_t ByteLength() const;
3417 
3418  /**
3419  * Create a new ArrayBuffer. Allocate |byte_length| bytes.
3420  * Allocated memory will be owned by a created ArrayBuffer and
3421  * will be deallocated when it is garbage-collected,
3422  * unless the object is externalized.
3423  */
3424  static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
3425 
3426  /**
3427  * Create a new ArrayBuffer over an existing memory block.
3428  * The created array buffer is by default immediately in externalized state.
3429  * The memory block will not be reclaimed when a created ArrayBuffer
3430  * is garbage-collected.
3431  */
3432  static Local<ArrayBuffer> New(
3433  Isolate* isolate, void* data, size_t byte_length,
3435 
3436  /**
3437  * Returns true if ArrayBuffer is externalized, that is, does not
3438  * own its memory block.
3439  */
3440  bool IsExternal() const;
3441 
3442  /**
3443  * Returns true if this ArrayBuffer may be neutered.
3444  */
3445  bool IsNeuterable() const;
3446 
3447  /**
3448  * Neuters this ArrayBuffer and all its views (typed arrays).
3449  * Neutering sets the byte length of the buffer and all typed arrays to zero,
3450  * preventing JavaScript from ever accessing underlying backing store.
3451  * ArrayBuffer should have been externalized and must be neuterable.
3452  */
3453  void Neuter();
3454 
3455  /**
3456  * Make this ArrayBuffer external. The pointer to underlying memory block
3457  * and byte length are returned as |Contents| structure. After ArrayBuffer
3458  * had been etxrenalized, it does no longer owns the memory block. The caller
3459  * should take steps to free memory when it is no longer needed.
3460  *
3461  * The memory block is guaranteed to be allocated with |Allocator::Allocate|
3462  * that has been set via Isolate::CreateParams.
3463  */
3465 
3466  /**
3467  * Get a pointer to the ArrayBuffer's underlying memory block without
3468  * externalizing it. If the ArrayBuffer is not externalized, this pointer
3469  * will become invalid as soon as the ArrayBuffer became garbage collected.
3470  *
3471  * The embedder should make sure to hold a strong reference to the
3472  * ArrayBuffer while accessing this pointer.
3473  *
3474  * The memory block is guaranteed to be allocated with |Allocator::Allocate|.
3475  */
3477 
3478  V8_INLINE static ArrayBuffer* Cast(Value* obj);
3479 
3481 
3482  private:
3483  ArrayBuffer();
3484  static void CheckCast(Value* obj);
3485 };
3486 
3487 
3488 #ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
3489 // The number of required internal fields can be defined by embedder.
3490 #define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
3491 #endif
3492 
3493 
3494 /**
3495  * A base class for an instance of one of "views" over ArrayBuffer,
3496  * including TypedArrays and DataView (ES6 draft 15.13).
3497  *
3498  * This API is experimental and may change significantly.
3499  */
3501  public:
3502  /**
3503  * Returns underlying ArrayBuffer.
3504  */
3505  Local<ArrayBuffer> Buffer();
3506  /**
3507  * Byte offset in |Buffer|.
3508  */
3509  size_t ByteOffset();
3510  /**
3511  * Size of a view in bytes.
3512  */
3513  size_t ByteLength();
3514 
3515  /**
3516  * Copy the contents of the ArrayBufferView's buffer to an embedder defined
3517  * memory without additional overhead that calling ArrayBufferView::Buffer
3518  * might incur.
3519  *
3520  * Will write at most min(|byte_length|, ByteLength) bytes starting at
3521  * ByteOffset of the underling buffer to the memory starting at |dest|.
3522  * Returns the number of bytes actually written.
3523  */
3525 
3526  /**
3527  * Returns true if ArrayBufferView's backing ArrayBuffer has already been
3528  * allocated.
3529  */
3530  bool HasBuffer() const;
3531 
3532  V8_INLINE static ArrayBufferView* Cast(Value* obj);
3533 
3534  static const int kInternalFieldCount =
3536 
3537  private:
3538  ArrayBufferView();
3539  static void CheckCast(Value* obj);
3540 };
3541 
3542 
3543 /**
3544  * A base class for an instance of TypedArray series of constructors
3545  * (ES6 draft 15.13.6).
3546  * This API is experimental and may change significantly.
3547  */
3549  public:
3550  /**
3551  * Number of elements in this typed array
3552  * (e.g. for Int16Array, |ByteLength|/2).
3553  */
3554  size_t Length();
3555 
3556  V8_INLINE static TypedArray* Cast(Value* obj);
3557 
3558  private:
3559  TypedArray();
3560  static void CheckCast(Value* obj);
3561 };
3562 
3563 
3564 /**
3565  * An instance of Uint8Array constructor (ES6 draft 15.13.6).
3566  * This API is experimental and may change significantly.
3567  */
3569  public:
3570  static Local<Uint8Array> New(Local<ArrayBuffer> array_buffer,
3571  size_t byte_offset, size_t length);
3572  static Local<Uint8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3573  size_t byte_offset, size_t length);
3574  V8_INLINE static Uint8Array* Cast(Value* obj);
3575 
3576  private:
3577  Uint8Array();
3578  static void CheckCast(Value* obj);
3579 };
3580 
3581 
3582 /**
3583  * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
3584  * This API is experimental and may change significantly.
3585  */
3587  public:
3588  static Local<Uint8ClampedArray> New(Local<ArrayBuffer> array_buffer,
3589  size_t byte_offset, size_t length);
3590  static Local<Uint8ClampedArray> New(
3591  Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset,
3592  size_t length);
3593  V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
3594 
3595  private:
3596  Uint8ClampedArray();
3597  static void CheckCast(Value* obj);
3598 };
3599 
3600 /**
3601  * An instance of Int8Array constructor (ES6 draft 15.13.6).
3602  * This API is experimental and may change significantly.
3603  */
3605  public:
3606  static Local<Int8Array> New(Local<ArrayBuffer> array_buffer,
3607  size_t byte_offset, size_t length);
3608  static Local<Int8Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3609  size_t byte_offset, size_t length);
3610  V8_INLINE static Int8Array* Cast(Value* obj);
3611 
3612  private:
3613  Int8Array();
3614  static void CheckCast(Value* obj);
3615 };
3616 
3617 
3618 /**
3619  * An instance of Uint16Array constructor (ES6 draft 15.13.6).
3620  * This API is experimental and may change significantly.
3621  */
3623  public:
3624  static Local<Uint16Array> New(Local<ArrayBuffer> array_buffer,
3625  size_t byte_offset, size_t length);
3626  static Local<Uint16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3627  size_t byte_offset, size_t length);
3628  V8_INLINE static Uint16Array* Cast(Value* obj);
3629 
3630  private:
3631  Uint16Array();
3632  static void CheckCast(Value* obj);
3633 };
3634 
3635 
3636 /**
3637  * An instance of Int16Array constructor (ES6 draft 15.13.6).
3638  * This API is experimental and may change significantly.
3639  */
3641  public:
3642  static Local<Int16Array> New(Local<ArrayBuffer> array_buffer,
3643  size_t byte_offset, size_t length);
3644  static Local<Int16Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3645  size_t byte_offset, size_t length);
3646  V8_INLINE static Int16Array* Cast(Value* obj);
3647 
3648  private:
3649  Int16Array();
3650  static void CheckCast(Value* obj);
3651 };
3652 
3653 
3654 /**
3655  * An instance of Uint32Array constructor (ES6 draft 15.13.6).
3656  * This API is experimental and may change significantly.
3657  */
3659  public:
3660  static Local<Uint32Array> New(Local<ArrayBuffer> array_buffer,
3661  size_t byte_offset, size_t length);
3662  static Local<Uint32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3663  size_t byte_offset, size_t length);
3664  V8_INLINE static Uint32Array* Cast(Value* obj);
3665 
3666  private:
3667  Uint32Array();
3668  static void CheckCast(Value* obj);
3669 };
3670 
3671 
3672 /**
3673  * An instance of Int32Array constructor (ES6 draft 15.13.6).
3674  * This API is experimental and may change significantly.
3675  */
3677  public:
3678  static Local<Int32Array> New(Local<ArrayBuffer> array_buffer,
3679  size_t byte_offset, size_t length);
3680  static Local<Int32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3681  size_t byte_offset, size_t length);
3682  V8_INLINE static Int32Array* Cast(Value* obj);
3683 
3684  private:
3685  Int32Array();
3686  static void CheckCast(Value* obj);
3687 };
3688 
3689 
3690 /**
3691  * An instance of Float32Array constructor (ES6 draft 15.13.6).
3692  * This API is experimental and may change significantly.
3693  */
3695  public:
3696  static Local<Float32Array> New(Local<ArrayBuffer> array_buffer,
3697  size_t byte_offset, size_t length);
3698  static Local<Float32Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3699  size_t byte_offset, size_t length);
3700  V8_INLINE static Float32Array* Cast(Value* obj);
3701 
3702  private:
3703  Float32Array();
3704  static void CheckCast(Value* obj);
3705 };
3706 
3707 
3708 /**
3709  * An instance of Float64Array constructor (ES6 draft 15.13.6).
3710  * This API is experimental and may change significantly.
3711  */
3713  public:
3714  static Local<Float64Array> New(Local<ArrayBuffer> array_buffer,
3715  size_t byte_offset, size_t length);
3716  static Local<Float64Array> New(Local<SharedArrayBuffer> shared_array_buffer,
3717  size_t byte_offset, size_t length);
3718  V8_INLINE static Float64Array* Cast(Value* obj);
3719 
3720  private:
3721  Float64Array();
3722  static void CheckCast(Value* obj);
3723 };
3724 
3725 
3726 /**
3727  * An instance of DataView constructor (ES6 draft 15.13.7).
3728  * This API is experimental and may change significantly.
3729  */
3731  public:
3732  static Local<DataView> New(Local<ArrayBuffer> array_buffer,
3733  size_t byte_offset, size_t length);
3734  static Local<DataView> New(Local<SharedArrayBuffer> shared_array_buffer,
3735  size_t byte_offset, size_t length);
3736  V8_INLINE static DataView* Cast(Value* obj);
3737 
3738  private:
3739  DataView();
3740  static void CheckCast(Value* obj);
3741 };
3742 
3743 
3744 /**
3745  * An instance of the built-in SharedArrayBuffer constructor.
3746  * This API is experimental and may change significantly.
3747  */
3749  public:
3750  /**
3751  * The contents of an |SharedArrayBuffer|. Externalization of
3752  * |SharedArrayBuffer| returns an instance of this class, populated, with a
3753  * pointer to data and byte length.
3754  *
3755  * The Data pointer of SharedArrayBuffer::Contents is always allocated with
3756  * |ArrayBuffer::Allocator::Allocate| by the allocator specified in
3757  * v8::Isolate::CreateParams::array_buffer_allocator.
3758  *
3759  * This API is experimental and may change significantly.
3760  */
3761  class V8_EXPORT Contents { // NOLINT
3762  public:
3763  Contents() : data_(NULL), byte_length_(0) {}
3764 
3765  void* Data() const { return data_; }
3766  size_t ByteLength() const { return byte_length_; }
3767 
3768  private:
3769  void* data_;
3770  size_t byte_length_;
3771 
3772  friend class SharedArrayBuffer;
3773  };
3774 
3775 
3776  /**
3777  * Data length in bytes.
3778  */
3779  size_t ByteLength() const;
3780 
3781  /**
3782  * Create a new SharedArrayBuffer. Allocate |byte_length| bytes.
3783  * Allocated memory will be owned by a created SharedArrayBuffer and
3784  * will be deallocated when it is garbage-collected,
3785  * unless the object is externalized.
3786  */
3787  static Local<SharedArrayBuffer> New(Isolate* isolate, size_t byte_length);
3788 
3789  /**
3790  * Create a new SharedArrayBuffer over an existing memory block. The created
3791  * array buffer is immediately in externalized state unless otherwise
3792  * specified. The memory block will not be reclaimed when a created
3793  * SharedArrayBuffer is garbage-collected.
3794  */
3795  static Local<SharedArrayBuffer> New(
3796  Isolate* isolate, void* data, size_t byte_length,
3798 
3799  /**
3800  * Returns true if SharedArrayBuffer is externalized, that is, does not
3801  * own its memory block.
3802  */
3803  bool IsExternal() const;
3804 
3805  /**
3806  * Make this SharedArrayBuffer external. The pointer to underlying memory
3807  * block and byte length are returned as |Contents| structure. After
3808  * SharedArrayBuffer had been etxrenalized, it does no longer owns the memory
3809  * block. The caller should take steps to free memory when it is no longer
3810  * needed.
3811  *
3812  * The memory block is guaranteed to be allocated with |Allocator::Allocate|
3813  * by the allocator specified in
3814  * v8::Isolate::CreateParams::array_buffer_allocator.
3815  *
3816  */
3818 
3819  /**
3820  * Get a pointer to the ArrayBuffer's underlying memory block without
3821  * externalizing it. If the ArrayBuffer is not externalized, this pointer
3822  * will become invalid as soon as the ArrayBuffer became garbage collected.
3823  *
3824  * The embedder should make sure to hold a strong reference to the
3825  * ArrayBuffer while accessing this pointer.
3826  *
3827  * The memory block is guaranteed to be allocated with |Allocator::Allocate|
3828  * by the allocator specified in
3829  * v8::Isolate::CreateParams::array_buffer_allocator.
3830  */
3832 
3833  V8_INLINE static SharedArrayBuffer* Cast(Value* obj);
3834 
3836 
3837  private:
3838  SharedArrayBuffer();
3839  static void CheckCast(Value* obj);
3840 };
3841 
3842 
3843 /**
3844  * An instance of the built-in Date constructor (ECMA-262, 15.9).
3845  */
3846 class V8_EXPORT Date : public Object {
3847  public:
3848  static V8_DEPRECATE_SOON("Use maybe version.",
3849  Local<Value> New(Isolate* isolate, double time));
3850  static V8_WARN_UNUSED_RESULT MaybeLocal<Value> New(Local<Context> context,
3851  double time);
3852 
3853  /**
3854  * A specialization of Value::NumberValue that is more efficient
3855  * because we know the structure of this object.
3856  */
3857  double ValueOf() const;
3858 
3859  V8_INLINE static Date* Cast(v8::Value* obj);
3860 
3861  /**
3862  * Notification that the embedder has changed the time zone,
3863  * daylight savings time, or other date / time configuration
3864  * parameters. V8 keeps a cache of various values used for
3865  * date / time computation. This notification will reset
3866  * those cached values for the current context so that date /
3867  * time configuration changes would be reflected in the Date
3868  * object.
3869  *
3870  * This API should not be called more than needed as it will
3871  * negatively impact the performance of date operations.
3872  */
3873  static void DateTimeConfigurationChangeNotification(Isolate* isolate);
3874 
3875  private:
3876  static void CheckCast(v8::Value* obj);
3877 };
3878 
3879 
3880 /**
3881  * A Number object (ECMA-262, 4.3.21).
3882  */
3884  public:
3885  static Local<Value> New(Isolate* isolate, double value);
3886 
3887  double ValueOf() const;
3888 
3889  V8_INLINE static NumberObject* Cast(v8::Value* obj);
3890 
3891  private:
3892  static void CheckCast(v8::Value* obj);
3893 };
3894 
3895 
3896 /**
3897  * A Boolean object (ECMA-262, 4.3.15).
3898  */
3900  public:
3901  static Local<Value> New(bool value);
3902 
3903  bool ValueOf() const;
3904 
3905  V8_INLINE static BooleanObject* Cast(v8::Value* obj);
3906 
3907  private:
3908  static void CheckCast(v8::Value* obj);
3909 };
3910 
3911 
3912 /**
3913  * A String object (ECMA-262, 4.3.18).
3914  */
3916  public:
3917  static Local<Value> New(Local<String> value);
3918 
3919  Local<String> ValueOf() const;
3920 
3921  V8_INLINE static StringObject* Cast(v8::Value* obj);
3922 
3923  private:
3924  static void CheckCast(v8::Value* obj);
3925 };
3926 
3927 
3928 /**
3929  * A Symbol object (ECMA-262 edition 6).
3930  *
3931  * This is an experimental feature. Use at your own risk.
3932  */
3934  public:
3935  static Local<Value> New(Isolate* isolate, Local<Symbol> value);
3936 
3937  Local<Symbol> ValueOf() const;
3938 
3939  V8_INLINE static SymbolObject* Cast(v8::Value* obj);
3940 
3941  private:
3942  static void CheckCast(v8::Value* obj);
3943 };
3944 
3945 
3946 /**
3947  * An instance of the built-in RegExp constructor (ECMA-262, 15.10).
3948  */
3949 class V8_EXPORT RegExp : public Object {
3950  public:
3951  /**
3952  * Regular expression flag bits. They can be or'ed to enable a set
3953  * of flags.
3954  */
3955  enum Flags {
3956  kNone = 0,
3957  kGlobal = 1,
3960  };
3961 
3962  /**
3963  * Creates a regular expression from the given pattern string and
3964  * the flags bit field. May throw a JavaScript exception as
3965  * described in ECMA-262, 15.10.4.1.
3966  *
3967  * For example,
3968  * RegExp::New(v8::String::New("foo"),
3969  * static_cast<RegExp::Flags>(kGlobal | kMultiline))
3970  * is equivalent to evaluating "/foo/gm".
3971  */
3972  static V8_DEPRECATE_SOON("Use maybe version",
3973  Local<RegExp> New(Local<String> pattern,
3974  Flags flags));
3975  static V8_WARN_UNUSED_RESULT MaybeLocal<RegExp> New(Local<Context> context,
3976  Local<String> pattern,
3977  Flags flags);
3978 
3979  /**
3980  * Returns the value of the source property: a string representing
3981  * the regular expression.
3982  */
3983  Local<String> GetSource() const;
3984 
3985  /**
3986  * Returns the flags bit field.
3987  */
3988  Flags GetFlags() const;
3989 
3990  V8_INLINE static RegExp* Cast(v8::Value* obj);
3991 
3992  private:
3993  static void CheckCast(v8::Value* obj);
3994 };
3995 
3996 
3997 /**
3998  * A JavaScript value that wraps a C++ void*. This type of value is mainly used
3999  * to associate C++ data structures with JavaScript objects.
4000  */
4001 class V8_EXPORT External : public Value {
4002  public:
4003  static Local<External> New(Isolate* isolate, void* value);
4004  V8_INLINE static External* Cast(Value* obj);
4005  void* Value() const;
4006  private:
4007  static void CheckCast(v8::Value* obj);
4008 };
4009 
4010 
4011 // --- Templates ---
4012 
4013 
4014 /**
4015  * The superclass of object and function templates.
4016  */
4017 class V8_EXPORT Template : public Data {
4018  public:
4019  /** Adds a property to each instance created by this template.*/
4020  void Set(Local<Name> name, Local<Data> value,
4021  PropertyAttribute attributes = None);
4022  V8_INLINE void Set(Isolate* isolate, const char* name, Local<Data> value);
4023 
4024  void SetAccessorProperty(
4025  Local<Name> name,
4026  Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
4027  Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
4028  PropertyAttribute attribute = None,
4029  AccessControl settings = DEFAULT);
4030 
4031  /**
4032  * Whenever the property with the given name is accessed on objects
4033  * created from this Template the getter and setter callbacks
4034  * are called instead of getting and setting the property directly
4035  * on the JavaScript object.
4036  *
4037  * \param name The name of the property for which an accessor is added.
4038  * \param getter The callback to invoke when getting the property.
4039  * \param setter The callback to invoke when setting the property.
4040  * \param data A piece of data that will be passed to the getter and setter
4041  * callbacks whenever they are invoked.
4042  * \param settings Access control settings for the accessor. This is a bit
4043  * field consisting of one of more of
4044  * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
4045  * The default is to not allow cross-context access.
4046  * ALL_CAN_READ means that all cross-context reads are allowed.
4047  * ALL_CAN_WRITE means that all cross-context writes are allowed.
4048  * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
4049  * cross-context access.
4050  * \param attribute The attributes of the property for which an accessor
4051  * is added.
4052  * \param signature The signature describes valid receivers for the accessor
4053  * and is used to perform implicit instance checks against them. If the
4054  * receiver is incompatible (i.e. is not an instance of the constructor as
4055  * defined by FunctionTemplate::HasInstance()), an implicit TypeError is
4056  * thrown and no callback is invoked.
4057  */
4058  void SetNativeDataProperty(
4059  Local<String> name, AccessorGetterCallback getter,
4060  AccessorSetterCallback setter = 0,
4061  // TODO(dcarney): gcc can't handle Local below
4062  Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4063  Local<AccessorSignature> signature = Local<AccessorSignature>(),
4064  AccessControl settings = DEFAULT);
4065  void SetNativeDataProperty(
4066  Local<Name> name, AccessorNameGetterCallback getter,
4067  AccessorNameSetterCallback setter = 0,
4068  // TODO(dcarney): gcc can't handle Local below
4069  Local<Value> data = Local<Value>(), PropertyAttribute attribute = None,
4070  Local<AccessorSignature> signature = Local<AccessorSignature>(),
4071  AccessControl settings = DEFAULT);
4072 
4073  private:
4074  Template();
4075 
4076  friend class ObjectTemplate;
4077  friend class FunctionTemplate;
4078 };
4079 
4080 
4081 /**
4082  * NamedProperty[Getter|Setter] are used as interceptors on object.
4083  * See ObjectTemplate::SetNamedPropertyHandler.
4084  */
4086  Local<String> property,
4087  const PropertyCallbackInfo<Value>& info);
4088 
4089 
4090 /**
4091  * Returns the value if the setter intercepts the request.
4092  * Otherwise, returns an empty handle.
4093  */
4095  Local<String> property,
4096  Local<Value> value,
4097  const PropertyCallbackInfo<Value>& info);
4098 
4099 
4100 /**
4101  * Returns a non-empty handle if the interceptor intercepts the request.
4102  * The result is an integer encoding property attributes (like v8::None,
4103  * v8::DontEnum, etc.)
4104  */
4106  Local<String> property,
4107  const PropertyCallbackInfo<Integer>& info);
4108 
4109 
4110 /**
4111  * Returns a non-empty handle if the deleter intercepts the request.
4112  * The return value is true if the property could be deleted and false
4113  * otherwise.
4114  */
4116  Local<String> property,
4117  const PropertyCallbackInfo<Boolean>& info);
4118 
4119 
4120 /**
4121  * Returns an array containing the names of the properties the named
4122  * property getter intercepts.
4123  */
4125  const PropertyCallbackInfo<Array>& info);
4126 
4127 
4128 // TODO(dcarney): Deprecate and remove previous typedefs, and replace
4129 // GenericNamedPropertyFooCallback with just NamedPropertyFooCallback.
4130 /**
4131  * GenericNamedProperty[Getter|Setter] are used as interceptors on object.
4132  * See ObjectTemplate::SetNamedPropertyHandler.
4133  */
4135  Local<Name> property, const PropertyCallbackInfo<Value>& info);
4136 
4137 
4138 /**
4139  * Returns the value if the setter intercepts the request.
4140  * Otherwise, returns an empty handle.
4141  */
4143  Local<Name> property, Local<Value> value,
4144  const PropertyCallbackInfo<Value>& info);
4145 
4146 
4147 /**
4148  * Returns a non-empty handle if the interceptor intercepts the request.
4149  * The result is an integer encoding property attributes (like v8::None,
4150  * v8::DontEnum, etc.)
4151  */
4153  Local<Name> property, const PropertyCallbackInfo<Integer>& info);
4154 
4155 
4156 /**
4157  * Returns a non-empty handle if the deleter intercepts the request.
4158  * The return value is true if the property could be deleted and false
4159  * otherwise.
4160  */
4162  Local<Name> property, const PropertyCallbackInfo<Boolean>& info);
4163 
4164 
4165 /**
4166  * Returns an array containing the names of the properties the named
4167  * property getter intercepts.
4168  */
4170  const PropertyCallbackInfo<Array>& info);
4171 
4172 
4173 /**
4174  * Returns the value of the property if the getter intercepts the
4175  * request. Otherwise, returns an empty handle.
4176  */
4178  uint32_t index,
4179  const PropertyCallbackInfo<Value>& info);
4180 
4181 
4182 /**
4183  * Returns the value if the setter intercepts the request.
4184  * Otherwise, returns an empty handle.
4185  */
4187  uint32_t index,
4188  Local<Value> value,
4189  const PropertyCallbackInfo<Value>& info);
4190 
4191 
4192 /**
4193  * Returns a non-empty handle if the interceptor intercepts the request.
4194  * The result is an integer encoding property attributes.
4195  */
4197  uint32_t index,
4198  const PropertyCallbackInfo<Integer>& info);
4199 
4200 
4201 /**
4202  * Returns a non-empty handle if the deleter intercepts the request.
4203  * The return value is true if the property could be deleted and false
4204  * otherwise.
4205  */
4207  uint32_t index,
4208  const PropertyCallbackInfo<Boolean>& info);
4209 
4210 
4211 /**
4212  * Returns an array containing the indices of the properties the
4213  * indexed property getter intercepts.
4214  */
4216  const PropertyCallbackInfo<Array>& info);
4217 
4218 
4219 /**
4220  * Access type specification.
4221  */
4228 };
4229 
4230 
4231 /**
4232  * Returns true if cross-context access should be allowed to the named
4233  * property with the given key on the host object.
4234  */
4235 typedef bool (*NamedSecurityCallback)(Local<Object> host,
4236  Local<Value> key,
4237  AccessType type,
4238  Local<Value> data);
4239 
4240 
4241 /**
4242  * Returns true if cross-context access should be allowed to the indexed
4243  * property with the given index on the host object.
4244  */
4245 typedef bool (*IndexedSecurityCallback)(Local<Object> host,
4246  uint32_t index,
4247  AccessType type,
4248  Local<Value> data);
4249 
4250 
4251 /**
4252  * A FunctionTemplate is used to create functions at runtime. There
4253  * can only be one function created from a FunctionTemplate in a
4254  * context. The lifetime of the created function is equal to the
4255  * lifetime of the context. So in case the embedder needs to create
4256  * temporary functions that can be collected using Scripts is
4257  * preferred.
4258  *
4259  * Any modification of a FunctionTemplate after first instantiation will trigger
4260  *a crash.
4261  *
4262  * A FunctionTemplate can have properties, these properties are added to the
4263  * function object when it is created.
4264  *
4265  * A FunctionTemplate has a corresponding instance template which is
4266  * used to create object instances when the function is used as a
4267  * constructor. Properties added to the instance template are added to
4268  * each object instance.
4269  *
4270  * A FunctionTemplate can have a prototype template. The prototype template
4271  * is used to create the prototype object of the function.
4272  *
4273  * The following example shows how to use a FunctionTemplate:
4274  *
4275  * \code
4276  * v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
4277  * t->Set("func_property", v8::Number::New(1));
4278  *
4279  * v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
4280  * proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
4281  * proto_t->Set("proto_const", v8::Number::New(2));
4282  *
4283  * v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
4284  * instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
4285  * instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
4286  * instance_t->Set("instance_property", Number::New(3));
4287  *
4288  * v8::Local<v8::Function> function = t->GetFunction();
4289  * v8::Local<v8::Object> instance = function->NewInstance();
4290  * \endcode
4291  *
4292  * Let's use "function" as the JS variable name of the function object
4293  * and "instance" for the instance object created above. The function
4294  * and the instance will have the following properties:
4295  *
4296  * \code
4297  * func_property in function == true;
4298  * function.func_property == 1;
4299  *
4300  * function.prototype.proto_method() invokes 'InvokeCallback'
4301  * function.prototype.proto_const == 2;
4302  *
4303  * instance instanceof function == true;
4304  * instance.instance_accessor calls 'InstanceAccessorCallback'
4305  * instance.instance_property == 3;
4306  * \endcode
4307  *
4308  * A FunctionTemplate can inherit from another one by calling the
4309  * FunctionTemplate::Inherit method. The following graph illustrates
4310  * the semantics of inheritance:
4311  *
4312  * \code
4313  * FunctionTemplate Parent -> Parent() . prototype -> { }
4314  * ^ ^
4315  * | Inherit(Parent) | .__proto__
4316  * | |
4317  * FunctionTemplate Child -> Child() . prototype -> { }
4318  * \endcode
4319  *
4320  * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
4321  * object of the Child() function has __proto__ pointing to the
4322  * Parent() function's prototype object. An instance of the Child
4323  * function has all properties on Parent's instance templates.
4324  *
4325  * Let Parent be the FunctionTemplate initialized in the previous
4326  * section and create a Child FunctionTemplate by:
4327  *
4328  * \code
4329  * Local<FunctionTemplate> parent = t;
4330  * Local<FunctionTemplate> child = FunctionTemplate::New();
4331  * child->Inherit(parent);
4332  *
4333  * Local<Function> child_function = child->GetFunction();
4334  * Local<Object> child_instance = child_function->NewInstance();
4335  * \endcode
4336  *
4337  * The Child function and Child instance will have the following
4338  * properties:
4339  *
4340  * \code
4341  * child_func.prototype.__proto__ == function.prototype;
4342  * child_instance.instance_accessor calls 'InstanceAccessorCallback'
4343  * child_instance.instance_property == 3;
4344  * \endcode
4345  */
4347  public:
4348  /** Creates a function template.*/
4349  static Local<FunctionTemplate> New(
4350  Isolate* isolate, FunctionCallback callback = 0,
4351  Local<Value> data = Local<Value>(),
4352  Local<Signature> signature = Local<Signature>(), int length = 0);
4353 
4354  /** Returns the unique function instance in the current execution context.*/
4355  V8_DEPRECATE_SOON("Use maybe version", Local<Function> GetFunction());
4357  Local<Context> context);
4358 
4359  /**
4360  * Set the call-handler callback for a FunctionTemplate. This
4361  * callback is called whenever the function created from this
4362  * FunctionTemplate is called.
4363  */
4364  void SetCallHandler(FunctionCallback callback,
4365  Local<Value> data = Local<Value>());
4366 
4367  /** Set the predefined length property for the FunctionTemplate. */
4368  void SetLength(int length);
4369 
4370  /** Get the InstanceTemplate. */
4372 
4373  /** Causes the function template to inherit from a parent function template.*/
4374  void Inherit(Local<FunctionTemplate> parent);
4375 
4376  /**
4377  * A PrototypeTemplate is the template used to create the prototype object
4378  * of the function created by this template.
4379  */
4381 
4382  /**
4383  * Set the class name of the FunctionTemplate. This is used for
4384  * printing objects created with the function created from the
4385  * FunctionTemplate as its constructor.
4386  */
4387  void SetClassName(Local<String> name);
4388 
4389 
4390  /**
4391  * When set to true, no access check will be performed on the receiver of a
4392  * function call. Currently defaults to true, but this is subject to change.
4393  */
4394  void SetAcceptAnyReceiver(bool value);
4395 
4396  /**
4397  * Determines whether the __proto__ accessor ignores instances of
4398  * the function template. If instances of the function template are
4399  * ignored, __proto__ skips all instances and instead returns the
4400  * next object in the prototype chain.
4401  *
4402  * Call with a value of true to make the __proto__ accessor ignore
4403  * instances of the function template. Call with a value of false
4404  * to make the __proto__ accessor not ignore instances of the
4405  * function template. By default, instances of a function template
4406  * are not ignored.
4407  */
4408  void SetHiddenPrototype(bool value);
4409 
4410  /**
4411  * Sets the ReadOnly flag in the attributes of the 'prototype' property
4412  * of functions created from this FunctionTemplate to true.
4413  */
4414  void ReadOnlyPrototype();
4415 
4416  /**
4417  * Removes the prototype property from functions created from this
4418  * FunctionTemplate.
4419  */
4420  void RemovePrototype();
4421 
4422  /**
4423  * Returns true if the given object is an instance of this function
4424  * template.
4425  */
4426  bool HasInstance(Local<Value> object);
4427 
4428  private:
4429  FunctionTemplate();
4430  friend class Context;
4431  friend class ObjectTemplate;
4432 };
4433 
4434 
4436  kNone = 0,
4437  // See ALL_CAN_READ above.
4438  kAllCanRead = 1,
4439  // Will not call into interceptor for properties on the receiver or prototype
4440  // chain. Currently only valid for named interceptors.
4441  kNonMasking = 1 << 1,
4442  // Will not call into interceptor for symbol lookup. Only meaningful for
4443  // named interceptors.
4444  kOnlyInterceptStrings = 1 << 2,
4445 };
4446 
4447 
4450  /** Note: getter is required **/
4456  Local<Value> data = Local<Value>(),
4458  : getter(getter),
4459  setter(setter),
4460  query(query),
4461  deleter(deleter),
4462  enumerator(enumerator),
4463  data(data),
4464  flags(flags) {}
4465 
4471  Local<Value> data;
4473 };
4474 
4475 
4478  /** Note: getter is required **/
4479  IndexedPropertyGetterCallback getter = 0,
4480  IndexedPropertySetterCallback setter = 0,
4481  IndexedPropertyQueryCallback query = 0,
4482  IndexedPropertyDeleterCallback deleter = 0,
4483  IndexedPropertyEnumeratorCallback enumerator = 0,
4484  Local<Value> data = Local<Value>(),
4486  : getter(getter),
4487  setter(setter),
4488  query(query),
4489  deleter(deleter),
4490  enumerator(enumerator),
4491  data(data),
4492  flags(flags) {}
4493 
4499  Local<Value> data;
4501 };
4502 
4503 
4504 /**
4505  * An ObjectTemplate is used to create objects at runtime.
4506  *
4507  * Properties added to an ObjectTemplate are added to each object
4508  * created from the ObjectTemplate.
4509  */
4511  public:
4512  /** Creates an ObjectTemplate. */
4513  static Local<ObjectTemplate> New(
4514  Isolate* isolate,
4515  Local<FunctionTemplate> constructor = Local<FunctionTemplate>());
4516  static V8_DEPRECATE_SOON("Use isolate version", Local<ObjectTemplate> New());
4517 
4518  /** Creates a new instance of this template.*/
4519  V8_DEPRECATE_SOON("Use maybe version", Local<Object> NewInstance());
4520  V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(Local<Context> context);
4521 
4522  /**
4523  * Sets an accessor on the object template.
4524  *
4525  * Whenever the property with the given name is accessed on objects
4526  * created from this ObjectTemplate the getter and setter callbacks
4527  * are called instead of getting and setting the property directly
4528  * on the JavaScript object.
4529  *
4530  * \param name The name of the property for which an accessor is added.
4531  * \param getter The callback to invoke when getting the property.
4532  * \param setter The callback to invoke when setting the property.
4533  * \param data A piece of data that will be passed to the getter and setter
4534  * callbacks whenever they are invoked.
4535  * \param settings Access control settings for the accessor. This is a bit
4536  * field consisting of one of more of
4537  * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
4538  * The default is to not allow cross-context access.
4539  * ALL_CAN_READ means that all cross-context reads are allowed.
4540  * ALL_CAN_WRITE means that all cross-context writes are allowed.
4541  * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
4542  * cross-context access.
4543  * \param attribute The attributes of the property for which an accessor
4544  * is added.
4545  * \param signature The signature describes valid receivers for the accessor
4546  * and is used to perform implicit instance checks against them. If the
4547  * receiver is incompatible (i.e. is not an instance of the constructor as
4548  * defined by FunctionTemplate::HasInstance()), an implicit TypeError is
4549  * thrown and no callback is invoked.
4550  */
4551  void SetAccessor(
4552  Local<String> name, AccessorGetterCallback getter,
4553  AccessorSetterCallback setter = 0, Local<Value> data = Local<Value>(),
4554  AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
4555  Local<AccessorSignature> signature = Local<AccessorSignature>());
4556  void SetAccessor(
4557  Local<Name> name, AccessorNameGetterCallback getter,
4558  AccessorNameSetterCallback setter = 0, Local<Value> data = Local<Value>(),
4559  AccessControl settings = DEFAULT, PropertyAttribute attribute = None,
4560  Local<AccessorSignature> signature = Local<AccessorSignature>());
4561 
4562  /**
4563  * Sets a named property handler on the object template.
4564  *
4565  * Whenever a property whose name is a string is accessed on objects created
4566  * from this object template, the provided callback is invoked instead of
4567  * accessing the property directly on the JavaScript object.
4568  *
4569  * Note that new code should use the second version that can intercept
4570  * symbol-named properties as well as string-named properties.
4571  *
4572  * \param getter The callback to invoke when getting a property.
4573  * \param setter The callback to invoke when setting a property.
4574  * \param query The callback to invoke to check if a property is present,
4575  * and if present, get its attributes.
4576  * \param deleter The callback to invoke when deleting a property.
4577  * \param enumerator The callback to invoke to enumerate all the named
4578  * properties of an object.
4579  * \param data A piece of data that will be passed to the callbacks
4580  * whenever they are invoked.
4581  */
4582  // TODO(dcarney): deprecate
4584  NamedPropertySetterCallback setter = 0,
4585  NamedPropertyQueryCallback query = 0,
4586  NamedPropertyDeleterCallback deleter = 0,
4587  NamedPropertyEnumeratorCallback enumerator = 0,
4588  Local<Value> data = Local<Value>());
4589  void SetHandler(const NamedPropertyHandlerConfiguration& configuration);
4590 
4591  /**
4592  * Sets an indexed property handler on the object template.
4593  *
4594  * Whenever an indexed property is accessed on objects created from
4595  * this object template, the provided callback is invoked instead of
4596  * accessing the property directly on the JavaScript object.
4597  *
4598  * \param getter The callback to invoke when getting a property.
4599  * \param setter The callback to invoke when setting a property.
4600  * \param query The callback to invoke to check if an object has a property.
4601  * \param deleter The callback to invoke when deleting a property.
4602  * \param enumerator The callback to invoke to enumerate all the indexed
4603  * properties of an object.
4604  * \param data A piece of data that will be passed to the callbacks
4605  * whenever they are invoked.
4606  */
4607  void SetHandler(const IndexedPropertyHandlerConfiguration& configuration);
4608  // TODO(dcarney): deprecate
4611  IndexedPropertySetterCallback setter = 0,
4612  IndexedPropertyQueryCallback query = 0,
4613  IndexedPropertyDeleterCallback deleter = 0,
4614  IndexedPropertyEnumeratorCallback enumerator = 0,
4615  Local<Value> data = Local<Value>()) {
4617  deleter, enumerator, data));
4618  }
4619  /**
4620  * Sets the callback to be used when calling instances created from
4621  * this template as a function. If no callback is set, instances
4622  * behave like normal JavaScript objects that cannot be called as a
4623  * function.
4624  */
4626  Local<Value> data = Local<Value>());
4627 
4628  /**
4629  * Mark object instances of the template as undetectable.
4630  *
4631  * In many ways, undetectable objects behave as though they are not
4632  * there. They behave like 'undefined' in conditionals and when
4633  * printed. However, properties can be accessed and called as on
4634  * normal objects.
4635  */
4636  void MarkAsUndetectable();
4637 
4638  /**
4639  * Sets access check callbacks on the object template and enables
4640  * access checks.
4641  *
4642  * When accessing properties on instances of this object template,
4643  * the access check callback will be called to determine whether or
4644  * not to allow cross-context access to the properties.
4645  */
4647  IndexedSecurityCallback indexed_handler,
4648  Local<Value> data = Local<Value>());
4649 
4650  /**
4651  * Gets the number of internal fields for objects generated from
4652  * this template.
4653  */
4654  int InternalFieldCount();
4655 
4656  /**
4657  * Sets the number of internal fields for objects generated from
4658  * this template.
4659  */
4660  void SetInternalFieldCount(int value);
4661 
4662  private:
4663  ObjectTemplate();
4664  static Local<ObjectTemplate> New(internal::Isolate* isolate,
4665  Local<FunctionTemplate> constructor);
4666  friend class FunctionTemplate;
4667 };
4668 
4669 
4670 /**
4671  * A Signature specifies which receiver is valid for a function.
4672  */
4673 class V8_EXPORT Signature : public Data {
4674  public:
4675  static Local<Signature> New(
4676  Isolate* isolate,
4677  Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
4678 
4679  private:
4680  Signature();
4681 };
4682 
4683 
4684 /**
4685  * An AccessorSignature specifies which receivers are valid parameters
4686  * to an accessor callback.
4687  */
4689  public:
4690  static Local<AccessorSignature> New(
4691  Isolate* isolate,
4692  Local<FunctionTemplate> receiver = Local<FunctionTemplate>());
4693 
4694  private:
4695  AccessorSignature();
4696 };
4697 
4698 
4699 /**
4700  * A utility for determining the type of objects based on the template
4701  * they were constructed from.
4702  */
4703 class V8_EXPORT TypeSwitch : public Data {
4704  public:
4705  static Local<TypeSwitch> New(Local<FunctionTemplate> type);
4706  static Local<TypeSwitch> New(int argc, Local<FunctionTemplate> types[]);
4707  int match(Local<Value> value);
4708 
4709  private:
4710  TypeSwitch();
4711 };
4712 
4713 
4714 // --- Extensions ---
4715 
4718  public:
4720  ExternalOneByteStringResourceImpl(const char* data, size_t length)
4721  : data_(data), length_(length) {}
4722  const char* data() const { return data_; }
4723  size_t length() const { return length_; }
4724 
4725  private:
4726  const char* data_;
4727  size_t length_;
4728 };
4729 
4730 /**
4731  * Ignore
4732  */
4733 class V8_EXPORT Extension { // NOLINT
4734  public:
4735  // Note that the strings passed into this constructor must live as long
4736  // as the Extension itself.
4737  Extension(const char* name,
4738  const char* source = 0,
4739  int dep_count = 0,
4740  const char** deps = 0,
4741  int source_length = -1);
4742  virtual ~Extension() { }
4744  v8::Isolate* isolate, v8::Local<v8::String> name) {
4745  return v8::Local<v8::FunctionTemplate>();
4746  }
4747 
4748  const char* name() const { return name_; }
4749  size_t source_length() const { return source_length_; }
4751  return &source_; }
4752  int dependency_count() { return dep_count_; }
4753  const char** dependencies() { return deps_; }
4754  void set_auto_enable(bool value) { auto_enable_ = value; }
4755  bool auto_enable() { return auto_enable_; }
4756 
4757  private:
4758  const char* name_;
4759  size_t source_length_; // expected to initialize before source_
4761  int dep_count_;
4762  const char** deps_;
4763  bool auto_enable_;
4764 
4765  // Disallow copying and assigning.
4766  Extension(const Extension&);
4767  void operator=(const Extension&);
4768 };
4769 
4770 
4771 void V8_EXPORT RegisterExtension(Extension* extension);
4772 
4773 
4774 // --- Statics ---
4775 
4776 V8_INLINE Local<Primitive> Undefined(Isolate* isolate);
4777 V8_INLINE Local<Primitive> Null(Isolate* isolate);
4778 V8_INLINE Local<Boolean> True(Isolate* isolate);
4779 V8_INLINE Local<Boolean> False(Isolate* isolate);
4780 
4781 
4782 /**
4783  * A set of constraints that specifies the limits of the runtime's memory use.
4784  * You must set the heap size before initializing the VM - the size cannot be
4785  * adjusted after the VM is initialized.
4786  *
4787  * If you are using threads then you should hold the V8::Locker lock while
4788  * setting the stack limit and you must set a non-default stack limit separately
4789  * for each thread.
4790  */
4792  public:
4794 
4795  /**
4796  * Configures the constraints with reasonable default values based on the
4797  * capabilities of the current device the VM is running on.
4798  *
4799  * \param physical_memory The total amount of physical memory on the current
4800  * device, in bytes.
4801  * \param virtual_memory_limit The amount of virtual memory on the current
4802  * device, in bytes, or zero, if there is no limit.
4803  */
4804  void ConfigureDefaults(uint64_t physical_memory,
4805  uint64_t virtual_memory_limit);
4806 
4807  // Deprecated, will be removed soon.
4808  V8_DEPRECATED("Use two-args version instead",
4809  void ConfigureDefaults(uint64_t physical_memory,
4810  uint64_t virtual_memory_limit,
4811  uint32_t number_of_processors));
4812 
4813  int max_semi_space_size() const { return max_semi_space_size_; }
4814  void set_max_semi_space_size(int value) { max_semi_space_size_ = value; }
4815  int max_old_space_size() const { return max_old_space_size_; }
4816  void set_max_old_space_size(int value) { max_old_space_size_ = value; }
4817  int max_executable_size() const { return max_executable_size_; }
4818  void set_max_executable_size(int value) { max_executable_size_ = value; }
4819  uint32_t* stack_limit() const { return stack_limit_; }
4820  // Sets an address beyond which the VM's stack may not grow.
4821  void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
4822  V8_DEPRECATED("Unused, will be removed", int max_available_threads() const) {
4823  return max_available_threads_;
4824  }
4825  // Set the number of threads available to V8, assuming at least 1.
4826  V8_DEPRECATED("Unused, will be removed",
4827  void set_max_available_threads(int value)) {
4828  max_available_threads_ = value;
4829  }
4830  size_t code_range_size() const { return code_range_size_; }
4831  void set_code_range_size(size_t value) {
4832  code_range_size_ = value;
4833  }
4834 
4835  private:
4836  int max_semi_space_size_;
4837  int max_old_space_size_;
4838  int max_executable_size_;
4839  uint32_t* stack_limit_;
4840  int max_available_threads_;
4841  size_t code_range_size_;
4842 };
4843 
4844 
4845 // --- Exceptions ---
4846 
4847 
4848 typedef void (*FatalErrorCallback)(const char* location, const char* message);
4849 
4850 
4851 typedef void (*MessageCallback)(Local<Message> message, Local<Value> error);
4852 
4853 // --- Tracing ---
4854 
4855 typedef void (*LogEventCallback)(const char* name, int event);
4856 
4857 /**
4858  * Create new error objects by calling the corresponding error object
4859  * constructor with the message.
4860  */
4862  public:
4863  static Local<Value> RangeError(Local<String> message);
4864  static Local<Value> ReferenceError(Local<String> message);
4865  static Local<Value> SyntaxError(Local<String> message);
4866  static Local<Value> TypeError(Local<String> message);
4867  static Local<Value> Error(Local<String> message);
4868 
4869  /**
4870  * Creates an error message for the given exception.
4871  * Will try to reconstruct the original stack trace from the exception value,
4872  * or capture the current stack trace if not available.
4873  */
4874  static Local<Message> CreateMessage(Local<Value> exception);
4875 
4876  /**
4877  * Returns the original stack trace that was captured at the creation time
4878  * of a given exception, or an empty handle if not available.
4879  */
4880  static Local<StackTrace> GetStackTrace(Local<Value> exception);
4881 };
4882 
4883 
4884 // --- Counters Callbacks ---
4885 
4886 typedef int* (*CounterLookupCallback)(const char* name);
4887 
4888 typedef void* (*CreateHistogramCallback)(const char* name,
4889  int min,
4890  int max,
4891  size_t buckets);
4892 
4893 typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
4894 
4895 // --- Memory Allocation Callback ---
4905 };
4906 
4911  };
4912 
4914  AllocationAction action,
4915  int size);
4916 
4917 // --- Leave Script Callback ---
4918 typedef void (*CallCompletedCallback)();
4919 
4920 // --- Promise Reject Callback ---
4924 };
4925 
4927  public:
4929  Local<Value> value, Local<StackTrace> stack_trace)
4930  : promise_(promise),
4931  event_(event),
4932  value_(value),
4933  stack_trace_(stack_trace) {}
4934 
4935  V8_INLINE Local<Promise> GetPromise() const { return promise_; }
4936  V8_INLINE PromiseRejectEvent GetEvent() const { return event_; }
4937  V8_INLINE Local<Value> GetValue() const { return value_; }
4938 
4939  // DEPRECATED. Use v8::Exception::CreateMessage(GetValue())->GetStackTrace()
4940  V8_INLINE Local<StackTrace> GetStackTrace() const { return stack_trace_; }
4941 
4942  private:
4943  Local<Promise> promise_;
4944  PromiseRejectEvent event_;
4945  Local<Value> value_;
4946  Local<StackTrace> stack_trace_;
4947 };
4948 
4950 
4951 // --- Microtask Callback ---
4952 typedef void (*MicrotaskCallback)(void* data);
4953 
4954 // --- Failed Access Check Callback ---
4955 typedef void (*FailedAccessCheckCallback)(Local<Object> target,
4956  AccessType type,
4957  Local<Value> data);
4958 
4959 // --- AllowCodeGenerationFromStrings callbacks ---
4960 
4961 /**
4962  * Callback to check if code generation from strings is allowed. See
4963  * Context::AllowCodeGenerationFromStrings.
4964  */
4965 typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
4966 
4967 // --- Garbage Collection Callbacks ---
4968 
4969 /**
4970  * Applications can register callback functions which will be called
4971  * before and after a garbage collection. Allocations are not
4972  * allowed in the callback functions, you therefore cannot manipulate
4973  * objects (set or delete properties for example) since it is possible
4974  * such operations will result in the allocation of objects.
4975  */
4976 enum GCType {
4980 };
4981 
4987 };
4988 
4989 typedef void (*GCPrologueCallback)(GCType type, GCCallbackFlags flags);
4990 typedef void (*GCEpilogueCallback)(GCType type, GCCallbackFlags flags);
4991 
4992 typedef void (*InterruptCallback)(Isolate* isolate, void* data);
4993 
4994 
4995 /**
4996  * Collection of V8 heap information.
4997  *
4998  * Instances of this class can be passed to v8::V8::HeapStatistics to
4999  * get heap statistics from V8.
5000  */
5002  public:
5003  HeapStatistics();
5004  size_t total_heap_size() { return total_heap_size_; }
5005  size_t total_heap_size_executable() { return total_heap_size_executable_; }
5006  size_t total_physical_size() { return total_physical_size_; }
5007  size_t total_available_size() { return total_available_size_; }
5008  size_t used_heap_size() { return used_heap_size_; }
5009  size_t heap_size_limit() { return heap_size_limit_; }
5010 
5011  private:
5012  size_t total_heap_size_;
5013  size_t total_heap_size_executable_;
5014  size_t total_physical_size_;
5015  size_t total_available_size_;
5016  size_t used_heap_size_;
5017  size_t heap_size_limit_;
5018 
5019  friend class V8;
5020  friend class Isolate;
5021 };
5022 
5023 
5025  public:
5027  const char* space_name() { return space_name_; }
5028  size_t space_size() { return space_size_; }
5029  size_t space_used_size() { return space_used_size_; }
5030  size_t space_available_size() { return space_available_size_; }
5031  size_t physical_space_size() { return physical_space_size_; }
5032 
5033  private:
5034  const char* space_name_;
5035  size_t space_size_;
5036  size_t space_used_size_;
5037  size_t space_available_size_;
5038  size_t physical_space_size_;
5039 
5040  friend class Isolate;
5041 };
5042 
5043 
5045  public:
5047  const char* object_type() { return object_type_; }
5048  const char* object_sub_type() { return object_sub_type_; }
5049  size_t object_count() { return object_count_; }
5050  size_t object_size() { return object_size_; }
5051 
5052  private:
5053  const char* object_type_;
5054  const char* object_sub_type_;
5055  size_t object_count_;
5056  size_t object_size_;
5057 
5058  friend class Isolate;
5059 };
5060 
5061 
5062 class RetainedObjectInfo;
5063 
5064 
5065 /**
5066  * FunctionEntryHook is the type of the profile entry hook called at entry to
5067  * any generated function when function-level profiling is enabled.
5068  *
5069  * \param function the address of the function that's being entered.
5070  * \param return_addr_location points to a location on stack where the machine
5071  * return address resides. This can be used to identify the caller of
5072  * \p function, and/or modified to divert execution when \p function exits.
5073  *
5074  * \note the entry hook must not cause garbage collection.
5075  */
5076 typedef void (*FunctionEntryHook)(uintptr_t function,
5077  uintptr_t return_addr_location);
5078 
5079 /**
5080  * A JIT code event is issued each time code is added, moved or removed.
5081  *
5082  * \note removal events are not currently issued.
5083  */
5085  enum EventType {
5092  };
5093  // Definition of the code position type. The "POSITION" type means the place
5094  // in the source code which are of interest when making stack traces to
5095  // pin-point the source location of a stack frame as close as possible.
5096  // The "STATEMENT_POSITION" means the place at the beginning of each
5097  // statement, and is used to indicate possible break locations.
5099 
5100  // Type of event.
5102  // Start of the instructions.
5103  void* code_start;
5104  // Size of the instructions.
5106  // Script info for CODE_ADDED event.
5108  // User-defined data for *_LINE_INFO_* event. It's used to hold the source
5109  // code line information which is returned from the
5110  // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
5111  // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
5112  void* user_data;
5113 
5114  struct name_t {
5115  // Name of the object associated with the code, note that the string is not
5116  // zero-terminated.
5117  const char* str;
5118  // Number of chars in str.
5120  };
5121 
5122  struct line_info_t {
5123  // PC offset
5125